Estimating Carbon Flux Phenology with Satellite-Derived Land Surface Phenology and Climate Drivers for Different Biomes: A Synthesis of AmeriFlux Observations
نویسندگان
چکیده
Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptake (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.
منابع مشابه
Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology
a r t i c l e i n f o Green leaf phenology is known to be sensitive to climate variation. Phenology is also important because it exerts significant control on terrestrial carbon cycling and sequestration. High-quality measurements of green leaf phenology are therefore increasingly important for understanding the effects of climate change on ecosystem function and biosphere–atmosphere interactio...
متن کاملIncorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands
Croplands are man-made ecosystems that have high net primary productivity during the growing season of crops, thus impacting carbon and other exchanges with the atmosphere. These exchanges play a major role in nutrient cycling and climate change related issues. An accurate representation of crop phenology and physiology is important in land-atmosphere carbon models being used to predict these e...
متن کاملSeason Spotter: Using Citizen Science to Validate and Scale Plant Phenology from Near-Surface Remote Sensing
The impact of a rapidly changing climate on the biosphere is an urgent area of research for mitigation policy and management. Plant phenology is a sensitive indicator of climate change and regulates the seasonality of carbon, water, and energy fluxes between the land surface and the climate system, making it an important tool for studying biosphere–atmosphere interactions. To monitor plant phen...
متن کاملMulti-satellite Earth Science Data Record for Studying Global Vegetation Trends and Changes
One of the stated goals of NASA Making Earth Science Data Records for Use in Research Environments (MEaSUREs) program is the support of the Earth Science research community by providing reliable Earth Science Data Records (ESDR). These products are expected not only to be of high quality but should also combine data from multiple sources to form the long and coherent measurements required for s...
متن کاملTemperature Sensitivity of Canopy Photosynthesis Phenology in Northern Ecosystems
Northern Hemisphere terrestrial ecosystems have been recognized as areas with large carbon uptake capacity and sinks and are sensitive to temperature change. However, the temperature sensitivity of ecosystem carbon uptake phenology in different biomes of northern ecosystems has not been well explored. In this study, based on our previous effort in characterizing canopy photosynthesis phenology ...
متن کامل