On Graded K-theory, Elliptic Operators and the Functional Calculus

نویسندگان

  • Jody Trout
  • JODY TROUT
چکیده

Let A be a graded C∗-algebra. We characterize Kasparov’s K-theory group K̂0(A) in terms of graded ∗-homomorphisms by proving a general converse to the functional calculus theorem for self-adjoint regular operators on graded Hilbert modules. An application to the index theory of elliptic differential operators on smooth closed manifolds and asymptotic morphisms is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fredholm realizations of elliptic symbols on manifolds with boundary II: fibered boundary Citation Albin, Pierre and Richard Melrose. "Fredholm realizations of elliptic symbols on manifolds with boundary II: fibered boundary." in Motives, quantum field theory, and pseudodifferential operators

We consider two calculi of pseudodifferential operators on manifolds with fibered boundary: Mazzeo’s edge calculus, which has as local model the operators associated to products of closed manifolds with asymptotically hyperbolic spaces, and the φ calculus of Mazzeo and the second author, which is similarly modeled on products of closed manifolds with asymptotically Euclidean spaces. We construc...

متن کامل

Asymptotic distribution of eigenvalues of the elliptic operator system

Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.

متن کامل

Buckling Analysis of Rectangular Functionally Graded Plates with an Elliptic Hole Under Thermal Loads

This paper presents thermal buckling analysis of rectangular functionally graded plates (FG plates) with an eccentrically located elliptic cutout. The plate governing equations derived by the first order shear deformation theory (FSDT) and finite element formulation is developed to analyze the plate behavior subjected to a uniform temperature rise across plate thickness. It is assumed that the ...

متن کامل

Fredholm Realizations of Elliptic Symbols on Manifolds with Boundary Ii: Fibered Boundary Pierre Albin and Richard Melrose

We consider two calculi of pseudodifferential operators on manifolds with fibered boundary: Mazzeo’s edge calculus, which has as local model the operators associated to products of closed manifolds with asymptotically hyperbolic spaces, and the φ calculus of Mazzeo and the second author, which is similarly modeled on products of closed manifolds with asymptotically Euclidean spaces. We construc...

متن کامل

On certain fractional calculus operators involving generalized Mittag-Leffler function

The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999