Understanding the strength of bioinspired soft composites
نویسندگان
چکیده
Remarkable mechanical properties of biocomposites (bone, teeth, shell, antler etc.) are usually attributed to their special design where staggered mineral platelets are embedded in a protein matrix. Because of the high aspect ratio of the platelet the soft protein deforms in the shear mode predominantly providing the linkage for the hard inclusions. Mimicking Nature one might design materials with a similar architecture. By employing a micromechanical analysis, we study in the present work the strength of a bio-inspired composite in which hard platelets are embedded in a soft matrix made of the vulcanized natural rubber. We perform simulations of uniaxial tension of the composite material based on a continuum mechanics formulation and the high-fidelity generalized method of cells. The use of the energy limiters in the constitutive model for rubber at finite strains allows us to model failure and arrive at the overall strength of the composite. We find that the overall strength of the composite depends on the deformation and failure of soft matrix in tension and shear. Moreover, we find that the strength of the composite cannot exceed the strength of the matrix. The latter observation is noteworthy because it is qualitatively different from the previous experimental results with biocomposites which show a dramatic (ten times) increase of the strength of the material as compared to the strengths of its constituents. We illustrate these analytical and numerical findings by our experiments on 3D printed composite materials. © 2017 Elsevier Ltd. All rights reserved.
منابع مشابه
Bioinspired composites from freeze casting with clathrate hydrates
Freeze casting with isopropanol (IPA)–H2O as a freezing agent has shown the potential to create porous scaffolds with enlarged pores. Though not experimentally proven, this effect has been suggested to be the result of non-stoichiometric structures called clathrate hydrates forming during the freezing process. In this manuscript, we build upon these results to provide experimental evidence of t...
متن کاملMagnetic and Electrical Properties of Nanocrystalline Fe85Si10Ni5/Phenolic Resin Soft Magnetic Composites
In this work, nanocrystalline Fe85Si10Ni5 soft magnetic powders were prepared by mechanical alloying and subsequent annealing to reduce the internal stresses and lattice strains. The powders were mixed with phenolic resin and warm pressed to produce nanostructured soft magnetic composites. The effect of annealing time and temperature on the crystalline structure, microstructure and magnetic pro...
متن کاملInterface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates
Bioinspired discontinuous nanolaminate design becomes an efficient way to mitigate the strength-ductility tradeoff in brittle materials via arresting the crack at the interface followed by controllable interface failure. The analytical solution and numerical simulation based on the nonlinear shear-lag model indicates that propagation of the interface failure can be unstable or stable when the i...
متن کاملBiomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk
Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomim...
متن کاملSTRENGTH AND FRACTURE TOUGHNESS OF WHISKER REINFORCED DENTAL RESIN-BASED COMPOSITES
Enhancing the properties of dental resin composites is of interest to researchers. The objective of the present investigation was to improve the strength and fracture toughness of dental composites via addition of silicon carbide whiskers and substitution of commonly used filler materials with stabilized zirconia ceramic powder. It was also intended to study the effect of powder- to- whisker ra...
متن کامل