Evolution of the ARF gene family in land plants: old domains, new tricks.

نویسندگان

  • Cédric Finet
  • Annick Berne-Dedieu
  • Charles P Scutt
  • Ferdinand Marlétaz
چکیده

Auxin response factors (ARF) are key players in plant development. They mediate the cellular response to the plant hormone auxin by activating or repressing the expression of downstream developmental genes. The pivotal activation function of ARF proteins is enabled by their four-domain architecture, which includes both DNA-binding and protein dimerization motifs. To determine the evolutionary origin of this characteristic architecture, we built a comprehensive data set of 224 ARF-related protein sequences that represents all major living divisions of land plants, except hornworts. We found that ARFs are split into three subfamilies that could be traced back to the origin of the land plants. We also show that repeated events of extensive gene duplication contributed to the expansion of those three original subfamilies. Further examination of our data set uncovered a broad diversity in the structure of ARF transcripts and allowed us to identify an additional conserved motif in ARF proteins. We found that additional structural diversity in ARF proteins is mainly generated by two mechanisms: genomic truncation and alternative splicing. We propose that the loss of domains from the canonical, four-domain ARF structure has promoted functional shifts within the ARF family by disrupting either dimerization or DNA-binding capabilities. For instance, the loss of dimerization domains in some ARFs from moss and spikemoss genomes leads to proteins that are reminiscent of Aux/IAA proteins, possibly providing a clue on the evolution of these modulators of ARF function. We also assessed the functional impact of alternative splicing in the case of ARF4, for which we have identified a novel isoform in Arabidopsis thaliana. Genetic analysis showed that these two transcripts exhibit markedly different developmental roles in A. thaliana. Gene duplications, domain rearrangement, and post-transcriptional regulation have thus enabled a subtle control of auxin signaling through ARF proteins that may have contributed to the critical importance of these regulators in plant development and evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of the B3 DNA Binding Superfamily: New Insights into REM Family Gene Diversification

BACKGROUND The B3 DNA binding domain includes five families: auxin response factor (ARF), abscisic acid-insensitive3 (ABI3), high level expression of sugar inducible (HSI), related to ABI3/VP1 (RAV) and reproductive meristem (REM). The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella p...

متن کامل

Contrasting modes of diversification in the Aux/IAA and ARF gene families.

The complete genomic sequence for Arabidopsis provides the opportunity to combine phylogenetic and genomic approaches to study the evolution of gene families in plants. The Aux/IAA and ARF gene families, consisting of 29 and 23 loci in Arabidopsis, respectively, encode proteins that interact to mediate auxin responses and regulate various aspects of plant morphological development. We developed...

متن کامل

Loss of Chloroplast trnLUAA Intron in Two Species of Hedysarum (Fabaceae): Evolutionary Implications

Previous studies have indicated that in all land plants examined to date, the chloroplast gene trnLUAA isinterrupted by a single group I intron ranging from 250 to over 1400 bp. The parasitic Epifagus virginiana haslost, however, the entire gene. We report that the intron is missing from the chloroplast genome of twoarctic species of the legume genus Hedysarum (H. alpinum, H. ...

متن کامل

Retention, Molecular Evolution, and Expression Divergence of the Auxin/Indole Acetic Acid and Auxin Response Factor Gene Families in Brassica Rapa Shed Light on Their Evolution Patterns in Plants

Auxin/indole acetic acids (Aux/IAAs) and auxin response factors (ARFs), major components of the Aux signaling network, are involved in many developmental processes in plants. Investigating their evolution will provide new sight on the relationship between the molecular evolution of these genes and the increasing morphotypes of plants. We constructed comparative analyses of the retention, struct...

متن کامل

Divergence and Conservative Evolution of XTNX Genes in Land Plants

The Toll-interleukin-1 receptor (TIR) and Nucleotide-binding site (NBS) domains are two major components of the TIR-NBS-leucine-rich repeat family plant disease resistance genes. Extensive functional and evolutionary studies have been performed on these genes; however, the characterization of a small group of genes that are composed of atypical TIR and NBS domains, namely XTNX genes, is limited...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 30 1  شماره 

صفحات  -

تاریخ انتشار 2013