Integrative Physiology Redox Regulation of Soluble Epoxide Hydrolase by 15-Deoxy- -Prostaglandin J2 Controls Coronary Hypoxic Vasodilation

نویسندگان

  • Rebecca L. Charles
  • Joseph R. Burgoyne
  • Manuel Mayr
  • Steven M. Weldon
  • Norbert Hubner
  • Hua Dong
  • Christophe Morisseau
  • Bruce D. Hammock
  • Aimee Landar
  • Philip Eaton
چکیده

Rationale: 15-Deoxy-prostaglandin (15d-PG)J2 is an electrophilic oxidant that dilates the coronary vasculature. This lipid can adduct to redox active protein thiols to induce oxidative posttranslational modifications that modulate protein and tissue function. Objective: To investigate the role of oxidative protein modifications in 15d-PGJ2–mediated coronary vasodilation and define the distal signaling pathways leading to enhanced perfusion. Methods and Results: Proteomic screening with biotinylated 15d-PGJ2 identified novel vascular targets to which it adducts, most notably soluble epoxide hydrolase (sEH). 15d-PGJ2 inhibited sEH by specifically adducting to a highly conserved thiol (Cys521) adjacent to the catalytic center of the hydrolase. Indeed a Cys521Ser sEH “redox-dead” mutant was resistant to 15d-PGJ2–induced hydrolase inhibition. 15d-PGJ2 dilated coronary vessels and a role for hydrolase inhibition was supported by 2 structurally different sEH antagonists each independently inducing vasorelaxation. Furthermore, 15d-PGJ2 and sEH antagonists also increased coronary effluent epoxyeicosatrienoic acids consistent with their vasodilatory actions. Indeed 14,15-EET alone induced relaxation and 15d-PGJ2–mediated vasodilation was blocked by the EET receptor antagonist 14,15epoxyeicosa-5(Z)-enoic acid (14,15-EEZE). Additionally, the coronary vasculature of sEH-null mice was basally dilated compared to wild-type controls and failed to vasodilate in response to 15d-PGJ2. Coronary vasodilation to hypoxia in wild-types was accompanied by 15d-PGJ2 adduction to and inhibition of sEH. Consistent with the importance of hydrolase inhibition, sEH-null mice failed to vasodilate during hypoxia. Conclusion: This represents a new paradigm for the regulation of sEH by an endogenous lipid, which is integral to the fundamental physiological response of coronary hypoxic vasodilation. (Circ Res. 2011;108:324-334.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of soluble epoxide hydrolase limits niacin-induced vasodilation in mice.

BACKGROUND The use of niacin in the treatment of dyslipidemias is limited by the common side effect of cutaneous vasodilation, commonly termed flushing. Flushing is thought to be due to release of the vasodilatory prostanoids prostaglandin D2 (PGD2) and prostaglandin E2 from arachidonic acid metabolism through the cyclooxygenase pathway. Arachidonic acid is also metabolized by the cytochrome P4...

متن کامل

15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner

Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...

متن کامل

Design, Synthesis and Biological Activity of 4,6-disubstituted Pyridin-2(1H)-ones as Novel Inhibitors of Soluble Epoxide Hydrolase

Soluble epoxide hydrolase enzyme is a promising therapeutic target for hypertension, vascular inflammation, pain and some other risk factors of cardiovascular diseases. The most potent sEH inhibitors reported in the literature are urea-based ones which often have poor bioavailability. In this study, in a quest for finding potent inhibitors of soluble epoxide hydrolase, some 4,6-disubstituted py...

متن کامل

Design, Synthesis and Biological Activity of 4,6-disubstituted Pyridin-2(1H)-ones as Novel Inhibitors of Soluble Epoxide Hydrolase

Soluble epoxide hydrolase enzyme is a promising therapeutic target for hypertension, vascular inflammation, pain and some other risk factors of cardiovascular diseases. The most potent sEH inhibitors reported in the literature are urea-based ones which often have poor bioavailability. In this study, in a quest for finding potent inhibitors of soluble epoxide hydrolase, some 4,6-disubstituted py...

متن کامل

Inhibition of soluble epoxide hydrolase increases coronary perfusion in mice

Roles of soluble epoxide hydrolase (sEH), the enzyme responsible for hydrolysis of epoxyeicosatrienoic acids (EETs) to their diols (DHETs), in the coronary circulation and cardiac function remain unknown. We tested the hypothesis that compromising EET hydrolysis/degradation, via sEH deficiency, lowers the coronary resistance to promote cardiac perfusion and function. Hearts were isolated from w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011