7 A Conjectured R - Matrix

نویسنده

  • H. W. Braden
چکیده

A new spectral parameter independent R-matrix (that depends on all of the dynamical variables) is proposed for the elliptic Calogero-Moser models. Necessary and sufficient conditions for this R-matrix to exist reduce to an equality between determinants of matrices involving elliptic functions. The needed identity appears new and is still unproven in full generality: we present it as a conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A conjecture of Neumann-Lara on infinite families of r-dichromatic circulant tournaments

In this paper we exhibit infinite families of vertex critical r-dichromatic circulant tournaments for all r ≥ 3. The existence of these infinite families was conjectured by NeumannLara (7), who later proved it for all r ≥ 3 and r 6= 7. Using different methods we find explicit constructions of these infinite families for all r ≥ 3, including the case when r = 7, which complets the proof of the c...

متن کامل

Infinite families of (n+1)-dichromatic vertex critical circulant tournaments

In this talk we expose the results about infinite families of vertex critical r-dichromatic circulant tournaments for all r ≥ 3. The existence of these infinite families was conjectured by Neumann-Lara [6], who later proved it for all r ≥ 3 and r = 7. Using different methods we find explicit constructions of these infinite families for all r ≥ 3, including the case when r = 7, which complete th...

متن کامل

ar X iv : 0 70 7 . 11 47 v 1 [ m at h - ph ] 8 J ul 2 00 7 Uncertainty principle with quantum Fisher information ∗

In this paper we prove a nontrivial lower bound for the determinant of the covariance matrix of quantum mechanical observables, which was conjectured by Gibilisco and Isola. The lower bound is given in terms of the commutator of the state and the observables and their scalar product, which is generated by an arbitrary symmetric operator monotone function. Introduction The basic object in the st...

متن کامل

ar X iv : 0 70 7 . 11 47 v 2 [ m at h - ph ] 1 1 O ct 2 00 7 Uncertainty principle with quantum Fisher information ∗

In this paper we prove a nontrivial lower bound for the determinant of the covariance matrix of quantum mechanical observables, which was conjectured by Gibilisco, Isola and Imparato. The lower bound is given in terms of the commutator of the state and the observables and their scalar product, which is generated by an arbitrary symmetric operator monotone function. Introduction The basic object...

متن کامل

Finding many D-optimal designs by randomised decomposition and switching

The Hadamard maximal determinant (maxdet) problem is to find the maximum determinant H(n) of a square {+1,−1}-matrix of given order n. Such a matrix with maximum determinant is called a Doptimal design of order n. We consider some cases where n 6= 0 mod 4, so the Hadamard bound is not attainable, but bounds due to Barba or Ehlich and Wojtas may be attainable. If R is a matrix with maximal (or c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008