Stoichiometry of the reaction between horseradish peroxidase and p-cresol.
نویسندگان
چکیده
Over a wide range of pH horseradish peroxidase compound I can be reduced quantitatively via compound II to the native enzyme by only 1 molar equivalent of p-cresol. Since 2 molar equivalents of electrons are required for the single turnover of the enzymatic cycle, p-cresol behaves as a 2-electron reductant. With p-cresol and compound I in a 1:1 ratio compound II and p-methylphenoxy radicals are obtained in the transient state. Compound II is then reduced to the native enzyme. A possible explanation for the facile reduction of compound II involves reaction with the dimerization product of these radicals, 1/2 molar equivalent of 2,2'-dihydroxy-5,5'-dimethylbiphenyl. If only 1/2 molar equivalent of p-cresol is present, than at high pH the reduction stops at compound II. The major steady state peroxidase oxidation product of p-cresol (with p-cresol in large excess compared to the enzyme concentration) is Pummerer's ketone. Pummerer's ketone is only reactive at pH values greater than about 9 where significant amounts of the enol can be formed via the enolate anion. Therefore, in alkaline solution it is reactive with compound I, but not with compound II, which is converted into an unreactive basic form. These results indicate that Pummerer's ketone cannot be the intermediate free radical product responsible for reducing compound II in the single turnover experiments. It is postulated that Pummerer's ketone is formed only in the steady state by the reaction of the p-methylphenoxy radical with excess p-cresol.
منابع مشابه
Studies on Horseradish Peroxidase
The kinetics of the oxidation of p-cresol by Compound II of horseradish peroxidase has been studied by the stopped flow technique at an ionic strength of 0.11 from pH 2 to 11. In acid solution the reaction is kinetically first order in jcresol, but in the alkaline region a saturation effect attributable to complex formation is observed. At very high pH an additional second order reaction betwee...
متن کاملMechanism of the chlorination reaction catalyzed by horseradish peroxidase with chlorite.
Horseradish peroxidase and chlorite, NaC102, are able to catalyze chlorination of monochlorodimedone to form dichlorodimedone. Catalytic amounts of horseradish peroxidase act to disproportionate chlorite forming chlorine dioxide and chloride ion. The chlorine dioxide thus formed is responsible for the chlorination of monochlorodimedone. It was previously thought (Chiang, R., Rand-Meir, T., Maki...
متن کاملMechanism of Oxidation by Horseradish Peroxidase Compound
Binding of p-cresol to native horseradish peroxidase was investigated by differential spectrophotometry, and the value lo3 Kdiss = 3 M was obtained at neutral and acid pH; binding is not competitive with that of cyanide and hydroxide. The Soret region spectrum of Compound II of the enzyme was measured in the steady state at pH 4.26, 6.89, and 10.95, and the differences were found to be too smal...
متن کاملThe reaction of chlorite with horseradish peroxidase and chloroperoxidase. Enzymatic chlorination and spectral intermediates.
Chloroperoxidase and horseradish peroxidase use NaClOz as both the oxidant and the halogen donor for the peroxidative chlorination of monochlorodimedone. Previous studies have shown that both horseradish peroxidase and chloroperoxidase can catalyze iodination reactions with hydrogen peroxide as the oxidant; however, only chloroperoxidase catalyzes chlorination reactions under these conditions. ...
متن کاملبررسی کارایی فرایند آنزیمی هورس رادیش پراکسیداز (HRP) و آب اکسیژنه در حذف آلکیل بنزیل سولفونات خطی (LAS) از محیط های آبی
Background and purpose: Enzymatic treatment, due to various benefits, has attracted many researchers since long time ago. Anionic detergents are one of the largest families of detergents that entered into the environment in recent decades. This study investigated the effect of horseradish peroxidase enzyme process on the removal of linear alkaline benzyl sulfonate (LAS) from aqueous solutions. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 251 19 شماره
صفحات -
تاریخ انتشار 1976