Adaptive Parallel Computation for Blind Source Separation with Systolic Architecture
نویسندگان
چکیده
The purpose of Blind Source Separation (BSS) is to obtain separated sources from convolutive mixture inputs. Among the various available BSS methods, Independent Component Analysis (ICA) is one of the representative methods. Its key idea is to repetitively update and calculate the measures. However, dealing with the measures obtained from multi-array sensors causes obstacles for real-time use. In order to solve this problem, it is necessary to convert the software implementation of BSS algorithm into the hardware architecture. Through the use of hardware architecture, the BSS algorithm can efficiently work within a relatively short time. In this study, we investigate a practical method using a parallel algorithm and architecture for hardware use in a blind source separation. We design a feedback network for real-time speech signal processing. The network is composed of forward and updates algorithms. The architecture of the network is systolic and therefore it is suitable for parallel processing. We only have to add and connect modules for scaling. This paper covers the process from the systolic design of BSS to the hardware implementation using Xilinx FPGAs. The simulation results of our proposed implementation are also represented in the experimental section. In that section, our architecture returns satisfying results with robust qualities.
منابع مشابه
A Systolic Architecture and Implementation of Feedback Network for Blind Source Separation
Blind source separation of independent sources from their convolutive mixtures is a problem in many real-world multi-sensor applications. However, the existing BSS architectures are more often than not based upon software and thus not suitable for direct implementation on hardware. The existing software of feedback network algorithm is not suitable for real-time implementations. In this paper, ...
متن کاملBlind Separation of Linear Convolutive Mixtures Using Orthogonal Filter Banks
We propose an algorithm and architecture for real-time blind source separation of linear convolutive mixtures using orthogonal filter banks. The adaptive algorithm derives from stochastic gradient descent optimization of a performance metric that quantifies independence not only across the reconstructed sources, but also across time within each source. The special case of a Laguerre section off...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملOptimization and Parallelization of Monaural Source Separation Algorithms in the openBliSSART Toolkit
We describe the implementation of monaural audio source separation algorithms in our toolkit openBliSSART (Blind Source Separation for Audio Recognition Tasks). To our knowledge, it provides the first freely available C++ implementation of non-negative matrix factorization (NMF) supporting the Compute Unified Device Architecture (CUDA) for fast parallel processing on graphics processing units (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intelligent Information Management
دوره 2 شماره
صفحات -
تاریخ انتشار 2010