Eigenvalue Estimates in the Semi-classical Limit for Pauli and Dirac Operators with a Magnetic Field

نویسنده

  • W. D. EVANS
چکیده

Leading order semi-classical asymptotics are given for the distribution of the eigen-values of Dirac and Pauli operators describing an electron in an electromagnetic eld. Minimal conditions are assumed on the electric and magnetic potentials to ensure the existence of only a nite number of eigenvalues outside the essential spectra. The method used is based on coherent state analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Relativistic Limit of Neutron Beta-Decay Cross-Section in the Presence of Strong Magnetic Field

One of the most important reactions of the URCA that lead to the cooling of a neutron star, is neutron beta-decay ( ). In this research, the energy spectra and wave functions of massive fermions taking into account the Anomalous Magnetic Moment (AMM) in the presence of a strong changed magnetic field are calculated. For this purpose, the Dirac-Pauli equation for charged and neutral fermions is ...

متن کامل

Semi-classical Asymptotics for the Counting Functions and Riesz Means of Pauli and Dirac Operators with Large Magnetic Fields

We study the asymptotic behavior, as Planck’s constant ~ → 0, of the number of discrete eigenvalues and the Riesz means of Pauli and Dirac operators with a magnetic field μB(x) and an electric field. The magnetic field strength μ is allowed to tend to infinity as ~ → 0. Two main types of results are established: in the first μ~ ≤ constant as ~ → 0, with magnetic fields of arbitrary direction; t...

متن کامل

Carleman Estimates and Inverse Problems for Dirac Operators

We consider limiting Carleman weights for Dirac operators and prove corresponding Carleman estimates. In particular, we show that harmonic functions can be considered as limiting Carleman weights for Dirac operators. As an application we consider the inverse problem of recovering a Lipschitz continuous magnetic field and electric potential from boundary measurements for the Pauli Dirac operator.

متن کامل

Remarks on Eigenvalue Estimates and Semigroup Domination

We present an overview over recent results concerning semi-classical spectral estimates for magnetic Schrödinger operators. We discuss how the constants in magnetic and non-magnetic eigenvalue bounds are related and we prove, in an abstract setting, that any non-magnetic Lieb-Thirring-type inequality implies a magnetic Lieb-Thirring-type inequality with possibly a larger constant.

متن کامل

On the Dirac and Pauli Operators with Several Aharonov-bohm Solenoids

We study the self-adjoint Pauli operators that can be realized as the square of a self-adjoint Dirac operator and correspond to a magnetic field consisting of a finite number of Aharonov-Bohm solenoids and a regular part, and prove an Aharonov-Casher type formula for the number of zero-modes for these operators. We also see that essentially only one of the Pauli operators are spin-flip invarian...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999