A Homogenous Luminescence Assay Reveals Novel Inhibitors for Giardia Lamblia Carbamate Kinase

نویسندگان

  • Catherine Z Chen
  • Noel Southall
  • Andrey Galkin
  • Kap Lim
  • Juan J Marugan
  • Liudmila Kulakova
  • Paul Shinn
  • Danielle van Leer
  • Wei Zheng
  • Osnat Herzberg
چکیده

The human pathogen Giardia lamblia is an anaerobic protozoan parasite that causes giardiasis, one of the most common diarrheal diseases worldwide. Although several drugs are available for the treatment of giardisis, resistance to these drugs has been reported and is likely to increase. The Giardia carbamate kinase (glCK) plays an essential role in Giardia metabolism and has no homologs in humans, making it an attractive candidate for anti-Giardia drug development. We have developed a luminescent enzyme coupled assay to measure the activity of glCK by quantitating the amount of ATP produced by the enzyme. This assay is homogeneous and has been miniaturized into a 1536-well plate format. A pilot screen against 4,096 known compounds using this assay yielded a signal-to-basal ratio of 11.5 fold and Z' factor of 0.8 with a hit rate of 0.9 % of inhibitors of glCK. Therefore, this Giardia lamblia carbamate kinase assay is useful for high throughput screening of large compound collection for identification of the inhibitors for drug development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for inactivation of Giardia lamblia carbamate kinase by disulfiram.

Carbamate kinase from Giardia lamblia is an essential enzyme for the survival of the organism. The enzyme catalyzes the final step in the arginine dihydrolase pathway converting ADP and carbamoyl phosphate to ATP and carbamate. We previously reported that disulfiram, a drug used to treat chronic alcoholism, inhibits G. lamblia CK and kills G. lamblia trophozoites in vitro at submicromolar IC50 ...

متن کامل

A novel biocompatible europium ligand for sensitive time-gated immunodetection.

We describe the synthesis of a novel hydrophilic derivative of a tetradentate β-diketone europium ligand that was used to prepare an immunoconjugate probe against Giardia lamblia cysts. We used a Gated Autosynchronous Luminescence Detector (GALD) to obtain high quality delayed luminescence images of cells 30-fold faster than ever previously reported.

متن کامل

Crystal Structures of Carbamate Kinase from Giardia lamblia Bound with Citric Acid and AMP-PNP

The parasite Giardia lamblia utilizes the L-arginine dihydrolase pathway to generate ATP from L-arginine. Carbamate kinase (CK) catalyzes the last step in this pathway, converting ADP and carbamoyl phosphate to ATP and ammonium carbamate. Because the L-arginine pathway is essential for G. lamblia survival and absent in high eukaryotes including humans, the enzyme is a potential target for drug ...

متن کامل

Luminescent europium nanoparticles with a wide excitation range from UV to visible light for biolabeling and time-gated luminescence bioimaging.

Silica-encapsulated highly luminescent europium nanoparticles with a wide excitation range from UV to visible light (200-450 nm) have been prepared and used for streptavidin labeling and time-gated luminescence imaging of an environmental pathogen, Giardia lamblia.

متن کامل

Detection of Giardia lamblia Cysts in Surface Waters of Rasht City, Iran

Introduction: Giardia lamblia is a protozoan parasite with universal distribution in human populations. This infections transfer to human via contaminated foods and waters with Giardia cysts. The Knowledge on the incidence of this agent in the potential infection sources can provide valuable information for control and the spread of this parasite to human communities. This study was aimed to is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012