Effect of cyclic strain on the mechanical behavior of virgin ultra-high molecular weight polyethylene.
نویسنده
چکیده
Ultra High Molecular Weight Polyethylene (UHMWPE) is a polymeric material employed in critical biomedical applications. Knowledge of its mechanical behavior is essential in order to obtain accurate prediction of stresses and deformations in real components, in particular when cyclic loading is considered. In the present research the effects of alternating and pulsating cyclic strain on the mechanical response of UHMWPE were studied by means of an experimental procedure based on tests carried out in strain control at different mean cyclic strain levels. During the tests the temperature increase due to hysteretic heating was controlled by means of a compressed air cooling apparatus specifically devised. By taking advantage of the possibility to control and stabilize temperature, cyclic steady-state mechanical response was investigated at room temperature and at 37 and 50 °C, comparing the effects of alternating and pulsating loading cycles. A transient thermal analysis using the finite element method (FEM) was also carried out to analyze temperature distribution within the specimen. UHMWPE exhibited cyclic softening as a result of a thermal contribution due to temperature increase and of a mechanical contribution related to the effects of applied load on the microstructure. The material exhibited different peak stress percent reductions for pulsating and alternating loading and during tensile and compressive loading phases. For pulsating tests significant cyclic mean stress relaxation was also observed. Based on the experimental procedure described the cyclic curve was determined as a function of temperature and fitted with a Ramberg-Osgood type constitutive equation, in which material parameters are temperature dependent. In this way the combined effects of temperature rises, such as those that might occur in biological environments or due to frictional heating, and mechanical loads could effectively be taken into account for constitutive modeling purposes of cyclic mechanical behavior of UHMWPE.
منابع مشابه
Investigation of Wear Behavior of Biopolymers for Total Knee Replacements Through Invitro Experimentation
The average life span of knee prosthesis used in Total Knee Replacement (TKR) is approximately 10 to 15 years. Literature indicates that the reasons for implant failures include wear, infection, instability, and stiffness. However, the majority of failures are due to wear and tear of the prosthesis. The most common biopolymer used in TKR is Ultra High Molecular Weight Polyethylene (UHMWPE). Pr...
متن کاملConstitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions.
When subjected to a monotonically increasing deformation state, the mechanical behavior of UHMWPE is characterized by a linear elastic response followed by distributed yielding and strain hardening at large deformations. During the unloading phases of an applied cyclic deformation process, the response is characterized by nonlinear recovery driven by the release of stored internal energy. A num...
متن کاملPreparation of Ultra High Molecular Weight Polyethylene Using Ziegler-Natta Catalyst System: Optimization of Parameters by Response Surface Methodology
متن کامل
Cyclic Behavior of Beams Based on the Chaboche Unified Viscoplastic Model
In this paper, ratcheting behavior of beams subjected to mechanical cyclic loads at elevated temperature, using the rate dependent Chaboche unified viscoplastic model with combined kinematic and isotropic hardening theory of plasticity, is investigated. A precise and general numerical scheme, using the incremental method of solution, is developed to obtain the cyclic inelastic creep and plastic...
متن کاملMullins effect in polyethylene and its dependency on crystal content: A network alteration model.
This contribution is focused on the Mullins effect in polyethylene. An ultra-low-density polyethylene with 0.15 crystal content, a low-density polyethylene with 0.3 crystal content and a high-density polyethylene with 0.72 crystal content are subjected to cyclic stretching over a large strain range. Experimental observations are first reported to examine how the crystal content influences the M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 4 7 شماره
صفحات -
تاریخ انتشار 2011