Feeding Hand-Crafted Features for Enhancing the Performance of Convolutional Neural Networks
نویسندگان
چکیده
Since the convolutional neural network (CNN) is believed to find right features for a given problem, the study of hand-crafted features is somewhat neglected these days. In this paper, we show that finding an appropriate feature for the given problem may be still important as they can enhance the performance of CNN-based algorithms. Specifically, we show that feeding an appropriate feature to the CNN enhances its performance in some face related works such as age/gender estimation, face detection and emotion recognition. We use Gabor filter bank responses for these tasks, feeding them to the CNN along with the input image. The stack of image and Gabor responses can be fed to the CNN as a tensor input, or as a fused image which is a weighted sum of image and Gabor responses. The Gabor filter parameters can also be tuned depending on the given problem, for increasing the performance. From the extensive experiments, it is shown that the proposed methods provide better performance than the conventional CNN-based methods that use only the input images.
منابع مشابه
Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملPillar Networks++: Distributed non-parametric deep and wide networks
In recent work, it was shown that combining multi-kernel based support vector machines (SVMs) can lead to near state-of-the-art performance on an action recognition dataset (HMDB-51 dataset). This was 0.4% lower than frameworks that used hand-crafted features in addition to the deep convolutional feature extractors. In the present work, we show that combining distributed Gaussian Processes with...
متن کاملLearning Local Convolutional Features for Face Recognition with 2D-Warping
The field of face recognition has seen a large boost in performance by applying Convolutional Neural Networks (CNN) in various ways. In this paper we want to leverage these advancements for face recognition with 2D-Warping. The latter has been shown to be effective especially with respect to pose-invariant face recognition, but usually relies on hand-crafted dense local feature descriptors. In ...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملA New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks
Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.07848 شماره
صفحات -
تاریخ انتشار 2018