Hedgehog signaling in mature osteoblasts regulates bone formation and resorption by controlling PTHrP and RANKL expression.

نویسندگان

  • Kinglun Kingston Mak
  • Yanming Bi
  • Chao Wan
  • Pao-Tien Chuang
  • Thomas Clemens
  • Marian Young
  • Yingzi Yang
چکیده

Hedgehog (Hh) signaling is required for osteoblast differentiation from mesenchymal progenitors during endochondral bone formation. However, the role of Hh signaling in differentiated osteoblasts during adult bone homeostasis remains to be elucidated. We found that in the postnatal bone, Hh signaling activity was progressively reduced as osteoblasts mature. Upregulating Hh signaling selectively in mature osteoblasts led to increased bone formation and excessive bone resorption. As a consequence, these mutant mice showed severe osteopenia. Conversely, inhibition of Hh signaling in mature osteoblasts resulted in increased bone mass and protection from bone loss in older mice. Cellular and molecular studies showed that Hh signaling indirectly induced osteoclast differentiation by upregulating osteoblast expression of PTHrP, which promoted RANKL expression via PKA and its target transcription factor CREB. Our results demonstrate that Hh signaling in mature osteoblasts regulates both bone formation and resorption and that inhibition of Hh signaling reduces bone loss in aged mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breast Cancer Cells Interact with Osteoblasts to Support Osteoclast Formation1.

Breast cancers commonly cause osteolytic metastases in bone, a process that is dependent upon osteoclast-mediated bone resorption. Recently the osteoclast differentiation factor (ODF), better termed RANKL (receptor activator of NF-kappaB ligand), expressed by osteoblasts has been cloned as well as its cognate signaling receptor, receptor activator of NFkappaB (RANK), and a secreted decoy recept...

متن کامل

Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL

Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing...

متن کامل

P38 Mitogen-Activated Protein Kinase Inhibitor, FR167653, Inhibits Parathyroid Hormone Related Protein-Induced Osteoclastogenesis and Bone Resorption

p38 mitogen-activated protein kinase (MAPK) acts downstream in the signaling pathway that includes receptor activator of NF-κB (RANK), a powerful inducer of osteoclast formation and activation. We investigated the role of p38 MAPK in parathyroid hormone related protein (PTHrP)-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo. The ability of FR167653 to inhibit osteo...

متن کامل

Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation.

Bone remodeling is characterized by the sequential, local tethering of osteoclasts and osteoblasts and is key to the maintenance of bone integrity. While bone matrix-mobilized growth factors, such as TGF-β, are proposed to regulate remodeling, no in vivo evidence exists that an osteoclast-produced molecule serves as a coupling factor for bone resorption to formation. We found that CTHRC1, a pro...

متن کامل

BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway.

Bone morphogenetic proteins (BMPs) are known to induce ectopic bone. However, it is largely unknown how BMP signaling in osteoblasts directly regulates endogenous bone. This study investigated the mechanism by which BMP signaling through the type IA receptor (BMPR1A) regulates endogenous bone mass using an inducible Cre-loxP system. When BMPR1A in osteoblasts was conditionally disrupted during ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental cell

دوره 14 5  شماره 

صفحات  -

تاریخ انتشار 2008