Asymptotic cones and ultrapowers of Lie groups

نویسندگان

  • Linus Kramer
  • Katrin Tent
چکیده

Asymptotic cones of metric spaces were first invented by Gromov. They are metric spaces which capture the ’large-scale structure’ of the underlying metric space. Later, van den Dries and Wilkie gave a more general construction of asymptotic cones using ultrapowers. Certain facts about asymptotic cones, like the completeness of the metric space, now follow rather easily from saturation properties of ultrapowers, and in this survey, we want to present two applications of the van den Dries-Wilkie approach. Using ultrapowers we obtain an explicit description of the asymptotic cone of a semisimple Lie group. From this description, using semi-algebraic groups and non-standard methods, we can give a short proof of the Margulis Conjecture. In a second application, we use set theory to answer a question of Gromov.

منابع مشابه

Asymptotic Cones of Lie Groups and Cone Equivalences

We introduce cone equivalences between metric spaces. These are maps, more general than quasi-isometries, that induce a bilipschitz homeomorphism between asymptotic cones. Non-trivial examples appear in the context of Lie groups, and we thus prove that the study of asymptotic cones of connected Lie groups can be reduced to that of solvable Lie groups of a special form.

متن کامل

Dimension of Asymptotic Cones of Lie Groups

We compute the covering dimension the asymptotic cone of a connected Lie group. For simply connected solvable Lie groups, this is the codimension of the exponential radical. As an application of the proof, we give a characterization of connected Lie groups that quasi-isometrically embed into a non-positively curved metric space.

متن کامل

Asymptotic Cones of Finitely Presented Groups

Let G be a connected semisimple Lie group with at least one absolutely simple factor S such that R-rank(S) ≥ 2 and let Γ be a uniform lattice in G. (a) If CH holds, then Γ has a unique asymptotic cone up to homeomorphism. (b) If CH fails, then Γ has 2 ω asymptotic cones up to homeomorphism.

متن کامل

Tree-graded Asymptotic Cones

We study the bilipschitz equivalence type of tree-graded spaces, showing that asymptotic cones of relatively hyperbolic groups (resp. asymptotic cones of groups containing a cut-point) only depend on the bilipschitz equivalence types of the pieces in the standard (resp. minimal) tree-graded structure. In particular, the asymptotic cones of many relatively hyperbolic groups do not depend on the ...

متن کامل

Tree-graded spaces and asymptotic cones of groups

We introduce a concept of tree-graded metric space and we use it to show quasi-isometry invariance of certain classes of relatively hyperbolic groups, to obtain a characterization of relatively hyperbolic groups in terms of their asymptotic cones, to find geometric properties of Cayley graphs of relatively hyperbolic groups, and to construct the first example of finitely generated group with a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Bulletin of Symbolic Logic

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2004