Entropy-based probabilistic fatigue damage prognosis and algorithmic performance comparison

نویسندگان

  • Xuefei Guan
  • Yongming Liu
  • Abhinav Saxena
  • Jose Celaya
  • Kai Goebel
چکیده

In this paper, a maximum entropy-based general framework for probabilistic fatigue damage prognosis is investigated. The proposed methodology is based on an underlying physics-based crack growth model. Various uncertainties from measurements, modeling, and parameter estimations are considered to describe the stochastic process of fatigue damage accumulation. A probabilistic prognosis updating procedure based on the maximum relative entropy concept is proposed to incorporate measurement data. Markov Chain Monte Carlo (MCMC) technique is used to provide the posterior samples for model updating in the maximum entropy approach. Experimental data are used to demonstrate the operation of the proposed probabilistic prognosis methodology. A set of prognostics-based metrics are employed to quantitatively evaluate the prognosis performance and compare the proposed method with the classical Bayesian updating algorithm. In particular, model accuracy, precision and convergence are rigorously evaluated in * addition to the qualitative visual comparison. * This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. It is shown that the proposed maximum relative entropy methodology has narrower confidence bounds of the remaining life prediction than classical Bayesian updating algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Two Probabilistic Fatigue Damage Assessment Approaches Using Prognostic Performance Metrics

* In this paper, two probabilistic prognosis updating schemes are compared. One is based on the classical Bayesian approach and the other is based on newly developed maximum relative entropy (MRE) approach. The algorithm performance of the two models is evaluated using a set of recently developed prognostics-based metrics. Various uncertainties from measurements, modeling, and parameter estimat...

متن کامل

Probabilistic fatigue damage prognosis using maximum entropy approach

A general framework for probabilistic fatigue damage prognosis using maximum entropy concept is proposed in this paper. The fatigue damage is calculated using a physics-based crack growth model. Due to the stochastic nature of crack growth process, uncertainties arising from the underlying physical model, parameters of the model, and the measurement noise are considered and integrated into this...

متن کامل

Probabilistic Prognosis of Non-Planar Fatigue Crack Growth

Quantifying the uncertainty in model parameters for the purpose of damage prognosis can be accomplished utilizing Bayesian inference and damage diagnosis techniques such as non-destructive evaluation or structural health monitoring. The number of samples required to solve the Bayesian inverse problem through common sampling techniques (e.g., Markov chain Monte Carlo) renders high-fidelity finit...

متن کامل

Probabilistic Sufficiency and Algorithmic Sufficiency from the point of view of Information Theory

‎Given the importance of Markov chains in information theory‎, ‎the definition of conditional probability for these random processes can also be defined in terms of mutual information‎. ‎In this paper‎, ‎the relationship between the concept of sufficiency and Markov chains from the perspective of information theory and the relationship between probabilistic sufficiency and algorithmic sufficien...

متن کامل

Efficient probabilistic methods for real-time fatigue damage prognosis

A general probabilistic fatigue crack growth prediction methodology for accurate and efficient damage prognosis is proposed in this paper. This methodology consists two major parts. First, the realistic random loading is transformed to an equivalent constant amplitude loading process based on a recently developed mechanism model. This transformation avoids the cycle-by-cycle calculation of fati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009