Reduced nicotinamide adenine dinucleotide fluorescence lifetime separates human mesenchymal stem cells from differentiated progenies.

نویسندگان

  • Han-Wen Guo
  • Chien-Tsun Chen
  • Yau-Huei Wei
  • Oscar K Lee
  • Vladimir Gukassyan
  • Fu-Jen Kao
  • Hsing-Wen Wang
چکیده

The metabolic changes of human mesenchymal stem cells (hMSCs) during osteogenic differentiation were accessed by reduced nicotinamide adenine dinucleotide (NADH) fluorescence lifetime. An increase in mean fluorescence lifetime and decrease in the ratio between free NADH and protein-bound NADH correlated with our previously reported increase in the adenosine triphosphate (ATP) level of hMSCs during differentiation. These findings suggest that NADH fluorescence lifetime may serve as a new optical biomarker for noninvasive selection of stem cells from differentiated progenies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy.

We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: N...

متن کامل

Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors

Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...

متن کامل

Nicotinamide metabolism regulates glioblastoma stem cell maintenance.

Metabolic dysregulation promotes cancer growth through not only energy production, but also epigenetic reprogramming. Here, we report that a critical node in methyl donor metabolism, nicotinamide N-methyltransferase (NNMT), ranked among the most consistently overexpressed metabolism genes in glioblastoma relative to normal brain. NNMT was preferentially expressed by mesenchymal glioblastoma ste...

متن کامل

Quantification of the Metabolic State in Cell-Model of Parkinson’s Disease by Fluorescence Lifetime Imaging Microscopy

Intracellular endogenous fluorescent co-enzymes, reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), play a pivotal role in cellular metabolism; quantitative assessment of their presence in living cells can be exploited to monitor cellular energetics in Parkinson's disease (PD), a neurodegenerative disorder. Here, we applied two-photon fluorescence lifetime i...

متن کامل

Rapid diagnosis and intraoperative margin assessment of human lung cancer with fluorescence lifetime imaging microscopy

A method of rapidly differentiating lung tumor from healthy tissue is extraordinarily needed for both the diagnosis and the intraoperative margin assessment. We assessed the ability of fluorescence lifetime imaging microscopy (FLIM) for differentiating human lung cancer and normal tissues with the autofluorescence, and also elucidated the mechanism in tissue studies and cell studies. A 15-patie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 13 5  شماره 

صفحات  -

تاریخ انتشار 2008