Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection

نویسنده

  • Vikas Kumar
چکیده

The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. The results thus obtained are presented numerically and graphically in the paper. Keywords—Axi-symmetric, ferrofluid, magnetic field, porous rotating disk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axi-symmetric Stagnation–Point Flow and Heat Transfer Obliquely Impinging on a Rotating Circular Cylinder

Laminar stagnation flow, axi-symmetrically yet obliquely impinging on a rotating circular cylinder, as well as its heat transfer is formulated as an exact solution of the Navier-Stokes equations. Rotational velocity of the cylinder is time-dependent while the surface transpiration is uniform and steady. The impinging stream is composed of a rotational axial flow superposed onto irrotational rad...

متن کامل

Rotating Disk Flow and Heat Transfer of a Conducting Non-Newtonian Fluid with Suction-Injection and Ohmic Heating

The steady hydromagnetic flow in a porous medium of an incompressible viscous electrically conducting non-Newtonian fluid above an infinite rotating porous disk is studied with heat transfer. An external uniform magnetic field is applied perpendicular to the disk and a uniform injection or suction is applied through the surface of the disk. Numerical solutions of the nonlinear governing equatio...

متن کامل

Three-dimensional chemically reacting radiative MHD flow of nanofluid over a bidirectional stretching surface

This study deals with the three-dimensional flow of a chemically reacting magnetohydrodynamic Sisko fluid over a bidirectional stretching surface filled with the ferrous nanoparticles in the presence of non-uniform heat source/sink, nonlinear thermal radiation, and suction/injection. After applying the self-suitable similarity transforms, the nonlinear ordinary differential equations are solved...

متن کامل

Axi-Symmetric Deformation Due to Various Sources in Saturated Porous Media with Incompressible Fluid

The general solution of equations of saturated porous media with incompressible fluid for two dimensional axi-symmetric problem is obtained in the transformed domain. The Laplace and Hankel transforms have been used to investigate the problem. As an application of the approach concentrated source and source over circular region have been taken to show the utility of the approach. The transforme...

متن کامل

Boundary Layers and Heat Transfer on a Rotating Rough Disk

The study of flow and heat transfer over rotating circular disks is of great practical importance in understanding the cooling of rotatory machinery such as turbines, electric motors and design and manufacturing of computer disk drives. This paper presents an analysis of the flow and heat transfer over a heated infinite permeable rough disk. Boundary-layer approximation reduces the elliptic Nav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013