Zero-Shot Kernel Learning

نویسندگان

  • Hongguang Zhang
  • Piotr Koniusz
چکیده

In this paper, we address an open problem of zero-shot learning. Its principle is based on learning a mapping that associates feature vectors extracted from i.e. images and attribute vectors that describe objects and/or scenes of interest. In turns, this allows classifying unseen object classes and/or scenes by matching feature vectors via mapping to a newly defined attribute vector describing a new class. Due to importance of such a learning task, there exist many methods that learn semantic, probabilistic, linear or piece-wise linear mappings. In contrast, we apply well-established kernel methods to learn a non-linear mapping between the feature and attribute spaces. We propose an easy learning objective inspired by the Linear Discriminant Analysis, Kernel-Target Alignment and Kernel Polarization methods [12, 8, 4] that promotes incoherence. We evaluate performance of our algorithm on the Polynomial as well as shift-invariant Gaussian and Cauchy kernels. Despite simplicity of our approach, we obtain state-of-the-art results on several zero-shot learning datasets and benchmarks including a recent AWA2 dataset [40].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supplementary Material: Predicting Visual Exemplars of Unseen Classes for Zero-Shot Learning

where θ is an implicit nonlinear mapping based on our kernel. We have dropped the subscript d for aesthetic reasons but readers are reminded that each regressor is trained independently with its own target values (i.e., vcd) and parameters (i.e.,wd). We found that the regression error is not sensitive to λ and set it to 1 in all experiments except for zero-shot to few-shot learning. We jointly ...

متن کامل

Siamese Networks for One Shot Learning using Kernel Based Activation functions

The lack of a large amount of training data has always been the constraining factor in solving a lot of problems in machine learning, making One Shot Learning one of the most intriguing ideas in machine learning. It aims to learn information about object categories from one, or only a few, training examples, and for certain image classification tasks, has successfully been able to get results c...

متن کامل

Make Svm Great Again with Siamese Kernel for Few-shot Learning

While deep neural networks have shown outstanding results in a wide range of applications, learning from a very limited number of examples is still a challenging task. Despite the difficulties of the few-shot learning, metric-learning techniques showed the potential of the neural networks for this task. While these methods perform well, they don’t provide satisfactory results. In this work, the...

متن کامل

Make Svm Great Again with Siamese Kernel for Few-shot Learning

While deep neural networks have shown outstanding results in a wide range of applications, learning from a very limited number of examples is still a challenging task. Despite the difficulties of the few-shot learning, metric-learning techniques showed the potential of the neural networks for this task. While these methods perform well, they don’t provide satisfactory results. In this work, the...

متن کامل

Fast Kronecker Product Kernel Methods via Generalized Vec Trick.

Kronecker product kernel provides the standard approach in the kernel methods' literature for learning from graph data, where edges are labeled and both start and end vertices have their own feature representations. The methods allow generalization to such new edges, whose start and end vertices do not appear in the training data, a setting known as zero-shot or zero-data learning. Such a setti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.01279  شماره 

صفحات  -

تاریخ انتشار 2018