Coherent fluorescence emission by using hybrid photonic–plasmonic crystals

نویسندگان

  • Lei Shi
  • Xiaowen Yuan
  • Yafeng Zhang
  • Tommi Hakala
  • Shaoyu Yin
  • Dezhuan Han
  • Xiaolong Zhu
  • Bo Zhang
  • Xiaohan Liu
  • Päivi Törmä
  • Wei Lu
  • Jian Zi
چکیده

The spatial and temporal coherence of the fluorescence emission controlled by a quasi-two-dimensional hybrid photonic-plasmonic crystal structure covered with a thin fluorescent-molecular-doped dielectric film is investigated experimentally. A simple theoretical model to describe how a confined quasi-two-dimensional optical mode may induce coherent fluorescence emission is also presented. Concerning the spatial coherence, it is experimentally observed that the coherence area in the plane of the light source is in excess of 49 μm2, which results in enhanced directional fluorescence emission. Concerning temporal coherence, the obtained coherence time is 4 times longer than that of the normal fluorescence emission in vacuum. Moreover, a Young's double-slit interference experiment is performed to directly confirm the spatially coherent emission. This smoking gun proof of spatial coherence is reported here for the first time for the optical-mode-modified emission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral and directional reshaping of fluorescence in large area self-assembled plasmonic-photonic crystals.

Spectral and directional reshaping of fluorescence from dye molecules embedded in self-assembled hybrid plasmonic-photonic crystals has been examined. The hybrid crystals comprise two-dimensional hexagonal arrays of dye-doped dielectric nanospheres, capped with silver semishells. Comparing the reshaped fluorescence spectra with measured transmission/reflection spectra and numerical calculations...

متن کامل

Plasmonic band structure controls single-molecule fluorescence.

Plasmonics and photonic crystals are two complementary approaches to tailor single-emitter fluorescence, using strong local field enhancements near metals on one hand and spatially extended photonic band structure effects on the other hand. Here, we explore the emergence of spontaneous emission control by finite-sized hexagonal arrays of nanoapertures milled in gold film. We demonstrate that al...

متن کامل

Metallic nanoparticles enhanced the spontaneous emission of semiconductor nanocrystals embedded in nanoimprinted photonic crystals.

We report on a method to enhance the light-emission efficiency of printable thin films of a polymer doped with luminescent (CdSe)ZnS nanocrystals via metallic nanoparticles and nanoimprinted photonic crystals. We experimentally show a strong fluorescence enhancement of nanocrystals by coupling exciton-plasmon with the localized surface plasmon of metallic nanoparticles. The emitted light is eff...

متن کامل

Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves

We propose dynamic modulation of a hybrid plasmonic-photonic crystal nanocavity using monochromatic coherent acoustic phonons formed by ultrahigh-frequency surface acoustic waves (SAWs) to achieve strong optomechanical interaction. The crystal nanocavity used in this study consisted of a defective photonic crystal beam coupled to a metal surface with a nanoscale air gap in between and provided ...

متن کامل

Plasmonic Waveguide-Integrated Nanowire Laser

Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication technologies. Despite significant advances in their fundamental aspects, the integration within scalable phot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014