Online Social Spammer Detection
نویسندگان
چکیده
The explosive use of social media also makes it a popular platform for malicious users, known as social spammers, to overwhelm normal users with unwanted content. One effective way for social spammer detection is to build a classifier based on content and social network information. However, social spammers are sophisticated and adaptable to game the system with fast evolving content and network patterns. First, social spammers continually change their spamming content patterns to avoid being detected. Second, reflexive reciprocity makes it easier for social spammers to establish social influence and pretend to be normal users by quickly accumulating a large number of “human” friends. It is challenging for existing anti-spamming systems based on batch-mode learning to quickly respond to newly emerging patterns for effective social spammer detection. In this paper, we present a general optimization framework to collectively use content and network information for social spammer detection, and provide the solution for efficient online processing. Experimental results on Twitter datasets confirm the effectiveness and efficiency of the proposed framework.
منابع مشابه
Social Spammer Detection in Microblogging
The availability of microblogging, like Twitter and Sina Weibo, makes it a popular platform for spammers to unfairly overpower normal users with unwanted content via social networks, known as social spamming. The rise of social spamming can significantly hinder the use of microblogging systems for effective information dissemination and sharing. Distinct features of microblogging systems presen...
متن کاملLeveraging Careful Microblog Users for Spammer Detection
Microblogging websites, e.g. Twitter and Sina Weibo, have become a popular platform for socializing and sharing information in recent years. Spammers have also discovered this new opportunity to unfairly overpower normal users with unsolicited content, namely social spams. While it is intuitive for everyone to follow legitimate users, recent studies show that both legitimate users and spammers ...
متن کاملOnline learning for Social Spammer Detection on Twitter
Social networking services like Twitter have been playing an import role in people’s daily life since it supports new ways of communicating effectively and sharing information. The advantages of these social network services enable them rapidly growing. However, the rise of social network services is leading to the increase of unwanted, disruptive information from spammers, malware discriminato...
متن کاملDiscovering social spammers from multiple views
Online social networks have become popular platforms for spammers to spread malicious content and links. Existing state-of-the-art optimization methods mainly use one kind of user-generated information (i.e., single view) to learn a classification model for identifying spammers. Due to the diversity and variability of spammers' strategies, spammers' behavior may not be completely characterized ...
متن کاملLSSL-SSD: Social Spammer Detection with Laplacian Score and Semi-supervised Learning
The rapid development of social networks makes it easy for people to communicate online. However, social networks always suffer from social spammers due to their openness. Spammers deliver information for economic purposes, and they pose threats to the security of social networks. To maintain the long-term running of online social networks, many detection methods are proposed. But current metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014