The Permeability of Ablative Materials Under Rarefied Gas Conditions

نویسندگان

  • Craig White
  • Thomas J. Scanlon
  • Richard E. Brown
چکیده

Numerical meshes of both cork and carbon fibre ablative materials in their virgin and pyrolised states, with realistic porosity and tortuosity, have been created from micro-computed tomography (μCT) scans. The porosity of each material has been calculated from the μCT scans and used to extract smaller representative sample volumes to perform numerical simulations on. Direct simulation Monte Carlo simulations of rarefied gas flow through these materials have been performed to find the permeability of each material to argon gas and to a gas mixture. The method has been validated by comparing the measured permeability for a Berea sandstone material to previously published experimental values. For the specific pressure conditions investigated here, the cork-phenolic material becomes around ten mores permeable after being pyrolised, while the carbon-phenolic material only becomes five times more permeable than its virgin form. The permeability to the gas mix∗Corresponding author Email addresses: [email protected] (Craig White), [email protected] (Thomas J. Scanlon), [email protected] (Richard E. Brown) Preprint submitted to Journal of Spacecraft and Rockets July 24, 2015 ture is found to be greater than to argon for most of the samples, showing the importance of choosing the correct gas for rarefied permeability studies. The form of the pressure and Mach number profiles through the materials is indepedent of the applied pressure gradient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of coal shrinkage, permeability and petrography on gas regime in mines Case study: Tahmoor coal mine, NSW, Australia

The volumetric changes in the coal matrix (Coal Shrinkage), permeability under various gas environment conditions as well as perographical properties were studied in the laboratory. The shrinkage and permeability of coal were examined with respect to changing gas type and confining pressures. The shrinkage tests were carried out in high-pressure bombs while the permeability study was conducted ...

متن کامل

Rarefied Pure Gas Transport in Non-Isothermal Porous Media: Effective Transport properties from Homogenization of the Kinetic Equation

Viscous flow, effusion, and thermal transpiration are the main gas transport modalities for a rarefied gas in a macro-porous medium. They have been well quantified only in the case of simple geometries. This paper develops a model based on the homogenization of kinetic equations producing effective transport properties (permeability, Knudsen diffusivity, thermal transpiration ratio) in any poro...

متن کامل

Pseudo Steady State Gas Flow in Tight Reservoir under Dual Mechanism Flow

Gas reservoirs with low permeability (k<0.1 mD) are among the unconventional reservoirs and are commonly termed as "Tight Gas Reservoirs". In conventional gas reservoirs that have high permeability, the flow of gas is basically controlled by the reservoir permeability and it is calculated using the Darcy equation. In these reservoirs, gas flow due to gas diffusion is ignored compared to Dar...

متن کامل

Experimental investigation on the coupled effect of effective stress and gas slippage on the permeability of shale

Permeability is one of the most important parameters to evaluate gas production in shale reservoirs. Because shale permeability is extremely low, gas is often used in the laboratory to measure permeability. However, the measured apparent gas permeability is higher than the intrinsic permeability due to the gas slippage effect, which could be even more dominant for materials with nanopores. Incr...

متن کامل

Rarefied Pure Gas Transport in Non-isothermal Porous Media: Validation and Tests of the Model

Abstract. Viscous flow, effusion, and thermal transpiration are the main gas transport modalities for a rarefied gas in a macro-porous medium. They have been well quantified only in the case of simple geometries. This paper presents a numerical method based on the homogenization of kinetic equations producing effective transport properties (permeability, Knudsen diffusivity, thermal transpirati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014