Bagged Kernel SOM

نویسندگان

  • Jérôme Mariette
  • Madalina Olteanu
  • Julien Boelaert
  • Nathalie Villa-Vialaneix
چکیده

In a number of real-life applications, the user is interested in analyzing non vectorial data, for which kernels are useful tools that embed data into an (implicit) Euclidean space. However, when using such approaches with prototype-based methods, the computational time is related to the number of observations (because the prototypes are expressed as convex combinations of the original data). Also, a side effect of the method is that the interpretability of the prototypes is lost. In the present paper, we propose to overcome these two issues by using a bagging approach. The results are illustrated on simulated data sets and compared to alternatives found in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the equivalence between kernel self-organising maps and self-organising mixture density networks

The kernel method has become a useful trick and has been widely applied to various learning models to extend their nonlinear approximation and classification capabilities. Such extensions have also recently occurred to the Self-Organising Map (SOM). In this paper, two recently proposed kernel SOMs are reviewed, together with their link to an energy function. The Self-Organising Mixture Network ...

متن کامل

Integrating the improved CBP model with kernel SOM

In this paper, we first design a more generalized network model, Improved CBP, based on the same structure as Circular BackPropagation (CBP) proposed by Ridella et al. The novelty of ICBP lies in: 1) it substitutes the original extra added node with the isotropic quadratic form input in CBP with the one with an anisotropic quadratic form input; 2) particularly, the weights between the extra nod...

متن کامل

Robust Face Recognition from a Single Training Image per Person with Kernel-Based SOM-Face

In this paper, a kernel-based SOM-face method is proposed to recognize expression variant faces under the situation of only one training image per person. Based on the localization of the face, an unsupervised kernelSOM learning procedure is carried out to capture the common local features and the non-Euclidean structure of the image data, so that a compact and robust representation of the face...

متن کامل

Extending the SOM Algorithm to Non-Euclidean Distances via the Kernel Trick

The Self Organizing Map is a nonlinear projection technique that allows to visualize the underlying structure of high dimensional data. However, the original algorithm relies on the use of Euclidean distances which often becomes a serious drawback for a number of real problems. In this paper, we present a new kernel version of the SOM algorithm that incorporates non-Euclidean dissimilarities ke...

متن کامل

A New Tree Kernel Based on SOM-SD

Many different paradigms have been studied in the past to treat tree structured data, including kernel and neural based approaches. However, both types of methods have their own drawbacks. Kernels typically can only cope with discrete labels and tend to be sparse. On the other side, SOM-SD, an extension of the SOM for structured data, is unsupervised and Markovian, i.e. the representation of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014