Direct-write assembly of 3D silk/hydroxyapatite scaffolds for bone co-cultures.
نویسندگان
چکیده
3D silk/HA microperiodic scaffolds for bone tissue engineering and angiogenesis are fabricated by direct-write assembly. This approach can be used to control filament and spacing size in the scaffold to allow investigation of the effect of scaffold architecture on osteogenesis and vessel-like structure formation from stem cells and endothelial cells.
منابع مشابه
Direct-Write Assembly of Microperiodic Silk Fibroin Scaffolds for Tissue Engineering Applications
Three–dimensional, microperiodic scaffolds of regenerated silk fibroin have been fabricated for tissue engineering by direct ink writing. The ink, which consisted of silk fibroin solution from the Bombyx mori silkworm, was deposited in a layer-by-layer fashion through a fine nozzle to produce a 3D array of silk fibers of diameter 5 mm. The extruded fibers crystallized when deposited into a meth...
متن کاملIn vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing.
The in vivo bone response of 3D periodic hydroxyapatite (HA) scaffolds is investigated. Two groups of HA scaffolds (11 mm diameter x 3.5 mm thick) are fabricated by direct-write assembly of a concentrated HA ink. The scaffolds consist of cylindrical rods periodically arranged into four quadrants with varying separation distances between rods. In the first group, HA rods (250 microm in diameter)...
متن کاملComposite Scaffolds Containing Silk Fibroin, Gelatin, and Hydroxyapatite for Bone Tissue Regeneration and 3D Cell Culturing
Three-dimensional (3D) silk fibroin scaffolds were modified with one of the major bone tissue derivatives (nano-hydroxyapatite) and/or a collagen derivative (gelatin). Adhesion and proliferation of mouse embryonic fibroblasts (MEF) within the scaffold were increased after modification with either nano-hydroxyapatite or gelatin. However, a significant increase in MEF adhesion and proliferation w...
متن کاملDirect-write assembly of 3D scaffolds using colloidal calcium phosphates inks
Additive manufacture techniques using concentrated colloidal inks are a promising approach for creating three-dimensional (3D) calcium phosphates scaffolds for bone repair and regeneration. Among those, the direct-write assembly allows building scaffolds with precise size and geometry. In the present work, commercial β-TCP and HA were used to produce two types of colloidal ink. According to the...
متن کاملComparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced healthcare materials
دوره 1 6 شماره
صفحات -
تاریخ انتشار 2012