sPLMap: A Probabilistic Approach to Schema Matching

نویسندگان

  • Henrik Nottelmann
  • Umberto Straccia
چکیده

This paper introduces the first formal framework for learning mappings between heterogeneous schemas which is based on logics and probability theory. This task, also called “schema matching”, is a crucial step in integrating heterogeneous collections. As schemas may have different granularities, and as schema attributes do not always match precisely, a general-purpose schema mapping approach requires support for uncertain mappings, and mappings have to be learned automatically. The framework combines different classifiers for finding suitable mapping candidates (together with their weights), and selects that set of mapping rules which is the most likely one. Finally, the framework with different variants has been evaluated on two different data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Semantic Schema Matching Approach

Schema matching is a critical step in many applications, such as data warehouse loading, Online Analytical Process (OLAP), Data mining, semantic web [2] and schema integration. This task is defined for finding the semantic correspondences between elements of two schemas. Recently, schema matching has found considerable interest in both research and practice. In this paper, we present a new impr...

متن کامل

Automatic generation of probabilistic relationships for improving schema matching

Schema matching is the problem of finding relationships among concepts across data sources that are heterogeneous in format and in structure. Starting from the ‘‘hidden meaning’’ associated with schema labels (i.e. class/attribute names), it is possible to discover lexical relationships among the elements of different schemata. In this work, we propose an automatic method aimed at discovering p...

متن کامل

Conceptual Hierarchies Matching: An Approach Based on Discovery of Implication Rules Between Concepts

Most research works about ontology or schema matching are based on symmetric similarity measures. By transposing the association rules paradigm, we propose to use asymmetric measures in order to enhance matching. We suggest an extensional and asymmetric matching method based on the discovery of significant implications between concepts described in textual documents. We use a probabilistic mode...

متن کامل

ارائه یک مدل احتمالاتی جهت تعیین انسجام متن در سیستم های پرسش و پاسخ تعاملی

Evaluation plays an important role in interactive question answering systems like many computational linguistics fields. The coherence between the questions and the answers exchanged between the user and the system is one of the important criteria in evaluating these systems. In this paper, a new approach to determine the degree of coherence of generated text by the IQA systems is presented. Th...

متن کامل

A Unified Schema Matching Framework

The proliferation of applications dealing with shared data radically increases the need to identify and discover the semantically corresponding elements. To cope with the difficulties of the necessary schema matching, we propose a unified framework. The framework tries to collect the most well-known work concerning schema matching in a generalized approach. We observe that nearly all of this wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005