Herded Gibbs Sampling

نویسندگان

  • Yutian Chen
  • Luke Bornn
  • Nando de Freitas
  • Mareija Eskelin
  • Jing Fang
  • Max Welling
چکیده

The Gibbs sampler is one of the most popular algorithms for inference in statistical models. In this paper, we introduce a herding variant of this algorithm, called herded Gibbs, that is entirely deterministic. We prove that herded Gibbs has an O(1/T ) convergence rate for models with independent variables and for fully connected probabilistic graphical models. Herded Gibbs is shown to outperform Gibbs in the tasks of image denoising with MRFs and named entity recognition with CRFs. However, the convergence for herded Gibbs for sparsely connected probabilistic graphical models is still an open problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixing Rates for the Alternating Gibbs Sampler over Restricted Boltzmann Machines and Friends

Alternating Gibbs sampling is a modification of classical Gibbs sampling where several variables are simultaneously sampled from their joint conditional distribution. In this work, we investigate the mixing rate of alternating Gibbs sampling with a particular emphasis on Restricted Boltzmann Machines (RBMs) and variants.

متن کامل

Blocking Gibbs Sampling in Very Large Probabilistic Expert Systems D Blocking Gibbs Sampling in Very Large Probabilistic Expert Systems

We introduce a methodology for performing approximate computations in very complex probabilistic systems (e.g. huge pedigrees). Our approach, called blocking Gibbs, combines exact local computations with Gibbs sampling in a way that complements the strengths of both. The methodology is illustrated on a real-world problem involving a heavily inbred pedigree containing 20;000 individuals. We pres...

متن کامل

Online Sparse Collapsed Hybrid Variational-Gibbs Algorithm for Hierarchical Dirichlet Process Topic Models

Topic models for text analysis are most commonly trained using either Gibbs sampling or variational Bayes. Recently, hybrid variational-Gibbs algorithms have been found to combine the best of both worlds. Variational algorithms are fast to converge and more efficient for inference on new documents. Gibbs sampling enables sparse updates since each token is only associated with one topic instead ...

متن کامل

Significant Reduction of Gibbs’ Overshoot with Generalized Sampling Method

As is well-known, the use of Shannon sampling to interpolate functions with discontinuous jump points leads to the Gibbs’ overshoot. In image processing, it can lead to the problem of artifacts close to edges, known as Gibbs ringring. Its amplitude cannot be reduced by increasing the sample density. Here we consider a generalized Shannon sampling method which allows the use of timevarying sampl...

متن کامل

Ensuring Rapid Mixing and Low Bias for Asynchronous Gibbs Sampling

Gibbs sampling is a Markov chain Monte Carlo technique commonly used for estimating marginal distributions. To speed up Gibbs sampling, there has recently been interest in parallelizing it by executing asynchronously. While empirical results suggest that many models can be efficiently sampled asynchronously, traditional Markov chain analysis does not apply to the asynchronous case, and thus asy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016