Functional principal component analysis of spatially correlated data

نویسندگان

  • Chong Liu
  • Surajit Ray
  • Giles Hooker
چکیده

This paper focuses on the analysis of spatially correlated functional data. We propose a parametric model for spatial correlation and the between-curve correlation is modeled by correlating functional principal component scores of the functional data. Additionally, in the sparse observation framework, we propose a novel approach of spatial principal analysis by conditional expectation to explicitly estimate spatial correlations and reconstruct individual curves. Assuming spatial stationarity, empirical spatial correlations are calculated as the ratio of eigenvalues of the smoothed covariance surface Cov(Xi (s), Xi (t)) and crosscovariance surface Cov(Xi (s), X j (t)) at locations indexed by i and j . Then a anisotropy Matérn spatial correlation model is fitted to empirical correlations. Finally, principal component scores are estimated to reconstruct the sparsely observed curves. This framework can naturally accommodate arbitrary covariance structures, but there is an enormous reduction in computation if one can assume the separability of temporal and spatial components. We demonstrate the consistency of our estimates and propose hypothesis tests to examine the separability as well as the isotropy effect of spatial correlation. Using simulation studies, we show that these Electronic supplementary material The online version of this article (doi:10.1007/s11222-016-9708-4) contains supplementary material, which is available to authorized users. B Surajit Ray [email protected] 1 State Street Global Advisors, Boston, USA 2 School of Mathematics and Statistics, University of Glasgow, Glasgow, UK 3 Department of Statistical Science and Department of Biological Statistics and Computational Biology, Cornell University, New York, USA methods have some clear advantages over existing methods of curve reconstruction and estimation of model parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Principal Component Analysis of Spatial-Temporal Point Processes with Applications in Disease Surveillance

In disease surveillance applications, the disease events are modeled by spatial-temporal point processes. We propose a new class of semi-parametric generalized linear mixed Cox model for such data, where the event rate is related to some known risk factors and some unknown latent random effects. We model the latent spatial-temporal process as spatially correlated functional data, and propose co...

متن کامل

Functional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis

Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA...

متن کامل

Functional Principal Component Analysis of Spatio-Temporal Point Processes with Applications in Disease Surveillance.

In disease surveillance applications, the disease events are modeled by spatio-temporal point processes. We propose a new class of semiparametric generalized linear mixed model for such data, where the event rate is related to some known risk factors and some unknown latent random effects. We model the latent spatio-temporal process as spatially correlated functional data, and propose Poisson m...

متن کامل

Asymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data

Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...

متن کامل

Extracellular exosomes and preeclampsia: a microarray-based study and functional enrichment analysis

Background:  Preeclampsia (PE) is a heterogeneous pregnancy disease which the exact pathophysiology of it is unknown. Recently exosomes have been indicated as a causative factor in the pathogenesis of PE. The aim of the study was to investigate in microarray library data to extract the differentially expressed genes (DEGs) in PE and to perform a functional enrichment analysis to predict the rol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and Computing

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2017