Abelian subvarieties of Drinfeld Jacobians and congruences modulo the characteristic

نویسندگان

  • Mihran Papikian
  • M. Papikian
چکیده

We relate the existence of Frobenius morphisms into the Jacobians ofDrinfeldmodular curves to the existence of congruences between cusp forms. Mathematics Subject Classification (2000) Primary 11F33; Secondary 11F52 · 11G10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pesenti–Szpiro inequality for optimal elliptic curves

We study Pesenti–Szpiro inequality in the case of elliptic curves over Fq(t) which occur as subvarieties of Jacobian varieties of Drinfeld modular curves. In general, we obtain an upperbound on the degrees of minimal discriminants of such elliptic curves in terms of the degrees of their conductors and q. In the special case when the level is prime, we bound the degrees of discriminants only in ...

متن کامل

Polarizations on abelian subvarieties of principally polarized abelian varieties with dihedral group actions

For any n ≥ 2 we study the group algebra decomposition of an ([ 2 ] + 1)dimensional family of principally polarized abelian varieties of dimension n with an action of the dihedral group of order 2n. For any odd prime p, n = p and n = 2p we compute the induced polarization on the isotypical components of these varieties and some other distinguished subvarieties. In the case of n = p the family c...

متن کامل

The André-Oort conjecture for products of Drinfeld modular curves

Let Z = X1×· · ·×Xn be a product of Drinfeld modular curves. We characterize those algebraic subvarieties X ⊂ Z containing a Zariski-dense set of CM points, i.e. points corresponding to n-tuples of Drinfeld modules with complex multiplication (and suitable level structure). This is a characteristic p analogue of a special case of the André-Oort conjecture.

متن کامل

subvarieties of Drinfeld modular varieties Florian

The André-Oort conjecture for Shimura varieties over C states that any subvariety X of a Shimura variety S/C containing a Zariski-dense set of special points must be of Hodge type. For an up-to-date overview of this topic, and of known results, see Rutger Noot’s Bourbaki talk [18]. The most significant result so far is due to Bas Edixhoven and Andrei Yafaev [9], who prove that any subcurve X ⊂ ...

متن کامل

Abelian solitons

We describe a new algebraically completely integrable system, whose integral manifolds are co-elliptic subvarieties of Jacobian varieties. This is a multi-periodic extension of the Krichever-Treibich-Verdier system, which consists of elliptic solitons. The goal of this work is to generalize the theory of elliptic solitons, which was developed by A. Treibich and J.-L. Verdier based on earlier wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005