Applications of Stein’s Method for Concentration Inequalities

ثبت نشده
چکیده

Stein’s method for concentration inequalities was introduced to prove concentration of measure in problems involving complex dependencies such as random permutations and Gibbs measures. In this paper, we provide some extensions of the theory and three applications: (1) We obtain a concentration inequality for the magnetization in the Curie-Weiss model at critical temperature (where it obeys a non-standard normalization and super-Gaussian concentration). (2) We derive exact large deviation asymptotics for the number of triangles in the Erdős-Rényi random graph G(n, p) when p ≥ 0.31. Similar results are derived also for general subgraph counts. (3) We obtain some interesting concentration inequalities for the Ising model on lattices that hold at all temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stein’s Method for Concentration Inequalities

We introduce a version of Stein’s method for proving concentration and moment inequalities in problems with dependence. Simple illustrative examples from combinatorics, physics, and mathematical statistics are provided.

متن کامل

Stein’s method for normal approximation

Stein’s method originated in 1972 in a paper in the Proceedings of the Sixth Berkeley Symposium. In that paper, he introduced the method in order to determine the accuracy of the normal approximation to the distribution of a sum of dependent random variables satisfying a mixing condition. Since then, many developments have taken place, both in extending the method beyond normal approximation an...

متن کامل

Fundamentals of Stein ’ s method ∗

Abstract: This survey article discusses the main concepts and techniques of Stein’s method for distributional approximation by the normal, Poisson, exponential, and geometric distributions, and also its relation to concentration of measure inequalities. The material is presented at a level accessible to beginning graduate students studying probability with the main emphasis on the themes that a...

متن کامل

Distances between probability distributions via characteristic functions and biasing

In a spirit close to classical Stein’s method, we introduce a new technique to derive first order ODEs on differences of characteristic functions. Then, using concentration inequalities and Fourier transform tools, we convert this information into sharp bounds for the so-called smooth Wasserstein metrics which frequently arise in Stein’s method theory. Our methodolgy is particularly efficient w...

متن کامل

Matrix Concentration Inequalities via the Method of Exchangeable Pairs1 by Lester Mackey2,

This paper derives exponential concentration inequalities and polynomial moment inequalities for the spectral norm of a random matrix. The analysis requires a matrix extension of the scalar concentration theory developed by Sourav Chatterjee using Stein’s method of exchangeable pairs. When applied to a sum of independent random matrices, this approach yields matrix generalizations of the classi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009