Thermochemical CO2 splitting via redox cycling of ceria reticulated foam structures with dual-scale porosities.
نویسندگان
چکیده
Efficient heat transfer of concentrated solar energy and rapid chemical kinetics are desired characteristics of solar thermochemical redox cycles for splitting CO2. We have fabricated reticulated porous ceramic (foam-type) structures made of ceria with dual-scale porosity in the millimeter and micrometer ranges. The larger void size range, with dmean = 2.5 mm and porosity = 0.76-0.82, enables volumetric absorption of concentrated solar radiation for efficient heat transfer to the reaction site during endothermic reduction, while the smaller void size range within the struts, with dmean = 10 μm and strut porosity = 0-0.44, increases the specific surface area for enhanced reaction kinetics during exothermic oxidation with CO2. Characterization is performed via mercury intrusion porosimetry, scanning electron microscopy, and thermogravimetric analysis (TGA). Samples are thermally reduced at 1773 K and subsequently oxidized with CO2 at temperatures in the range 873-1273 K. On average, CO production rates are ten times higher for samples with 0.44 strut porosity than for samples with non-porous struts. The oxidation rate scales with specific surface area and the apparent activation energy ranges from 90 to 135.7 kJ mol(-1). Twenty consecutive redox cycles exhibited stable CO production yield per cycle. Testing of the dual-scale RPC in a solar cavity-receiver exposed to high-flux thermal radiation (3.8 kW radiative power at 3015 suns) corroborated the superior performance observed in the TGA, yielding a shorter cycle time and a mean solar-to-fuel energy conversion efficiency of 1.72%.
منابع مشابه
Splitting CO2 with a ceria‐based redox cycle in a solar‐driven thermogravimetric analyzer
Thermochemical splitting of CO2 via a ceria-based redox cycle was performed in a solar-driven thermogravimetric analyzer. Overall reaction rates, including heat and mass transport, were determined under concentrated irradiation mimicking realistic operation of solar reactors. Reticulated porous ceramic (RPC) structures and fibers made of undoped and Zr4+-doped CeO2, were endothermally reduced u...
متن کاملMorphological Characterization and Effective Thermal Conductivity of Dual-Scale Reticulated Porous Structures
Reticulated porous ceramic (RPC) made of ceria are promising structures used in solar thermochemical redox cycles for splitting CO₂ and H₂O. They feature dual-scale porosity with mm-size pores for effective radiative heat transfer during reduction and µm-size pores within its struts for enhanced kinetics during oxidation. In this work, the detailed 3D digital representation of the complex dual-...
متن کاملExperimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor
We report on the experimental demonstration of an aerosol solar reactor for the thermal reduction of ceria, as part of a thermochemical redox cycle for splitting H2O and CO2. The concept utilizes a cavity-receiver enclosing an array of alumina tubes, each containing a downward gravity-driven aerosol flow of ceria particles countercurrent to an inert sweep gas flow for intrinsic separation of re...
متن کاملSolar-Driven Thermochemical Splitting of CO2 and In Situ Separation of CO and O2 across a Ceria Redox Membrane Reactor
Splitting CO2 with a thermochemical redox cycle utilizes the entire solar spectrum and provides a favorable path to the synthesis of solar fuels at high rates and efficiencies. However, the temperature/pressure swing commonly applied between reduction and oxidation steps incurs irreversible energy losses and severe material stresses. Here, we experimentally demonstrate for the first time the si...
متن کاملEffective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation
High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 22 شماره
صفحات -
تاریخ انتشار 2014