Forms of forward quadrupedal locomotion. II. A comparison of posture, hindlimb kinematics, and motor patterns for upslope and level walking.

نویسندگان

  • P Carlson-Kuhta
  • T V Trank
  • J L Smith
چکیده

To gain insight into the neural mechanisms controlling different forms of quadrupedal walking of normal cats, data on postural orientation, hindlimb kinematics, and motor patterns of selected hindlimb muscles were assessed for four grades of upslope walking, from 25 to 100% (45 degrees incline), and compared with similar data for level treadmill walking (0.6 m/s). Kinematic data for the hip, knee, ankle, and metatarsophalangeal joints were obtained from digitizing ciné film that was synchronized with electromyographic (EMG) records from 13 different hindlimb muscles. Cycle periods, the structure of the step cycle, and paw-contact sequences were similar at all grades and typical of lateral-sequence walking. Also, a few half-bound and transverse gallop steps were assessed from trials at the 100% grade; these steps had shorter cycle periods than the walking steps and less of the cycle (68 vs. 56%) was devoted to stance. Each cat assumed a crouched posture at the steeper grades of upslope walking and stride length decreased, whereas the overall position of the stride shifted caudally with respect to the hip joint. At the steeper grades, the range and duration of swing-related flexion increased at all joints, the stance-phase yield was absent at the knee and ankle joints, and the range of stance-phase extension at knee and ankle joints increased. Patterns of muscle activity for upslope and level walking were similar with some notable exceptions. At the steeper grades, the EMG activity of muscles with swing-related activity, such as the digit flexor muscle, the flexor digitorum longus (FDL), and the knee flexor muscle, the semitendinosus (ST), was prolonged and continued well into midswing. The EMG activity of stance-related muscles also increased in amplitude with grade, and three muscles not active during the stance phase of level walking had stance activity that increased in amplitude and duration at the steepest grades; these muscles were the ST, FDL, and extensor digitorum brevis. Overall the changes in posture, hindlimb kinematics, and the activity patterns of hindlimb muscles during upslope walking reflected the need to continually move the body mass forward and upward during stance and to ensure that the paw cleared the inclined slope during swing. The implications of these changes for the neural control of walking and expected changes in hindlimb kinetics for slope walking are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forms of forward quadrupedal locomotion. III. A comparison of posture, hindlimb kinematics, and motor patterns for downslope and level walking.

To gain further insight into the neural mechanisms for different forms of quadrupedal walking, data on postural orientation, hindlimb kinematics, and motor patterns were assessed for four grades of downslope walking, from 25% (14 degrees slope) to 100% (45 degrees), and compared with data from level and downslope walking at five grades (5-25%) on the treadmill (0.6 m/s). Kinematic data were obt...

متن کامل

Motor patterns for different forms of walking: cues for the locomotor central pattern generator.

F the past decade, we have assessed the posture, hindlimb dynamics, and motor patterns for different forms of cat locomotion, including forward and backward walking 4 and slope walking. Two of our goals for undertaking these studies have been to identify the roles of muscle and inertial forces in the control of limb motion (reviewed in ref. 7) and to determine the mutability of motor patterns a...

متن کامل

Qualitative Comparison between Rats and Humans in Quadrupedal and Bipedal Locomotion

Bipedal (Bp) locomotion is one of the most characteristic motor behaviors in human beings. Innate quadrupedal (Qp) four-legged animals also often walk bipedally. The walking posture, however, is significantly different between the two. This suggests that although both have a potential to walk bipedally, however, the human has a body scheme suitable for Bp locomotion, probably its skeletal syste...

متن کامل

The eVects of self-reinnervation of cat medial and lateral gastrocnemius muscles on hindlimb kinematics in slope walking

The aim of this study was to investigate the eVects of self-reinnervation of the medial (MG) and lateral gastrocnemius (LG) muscles on joint kinematics of the whole hindlimb during overground walking on surfaces of varying slope in the cat. Hindlimb kinematics were assessed (1) with little or no activity in MG and LG (short-term eVects of self-reinnervation), and (2) after motor function of the...

متن کامل

Activity of motor cortex neurons during backward locomotion.

Forward walking (FW) and backward walking (BW) are two important forms of locomotion in quadrupeds. Participation of the motor cortex in the control of FW has been intensively studied, whereas cortical activity during BW has never been investigated. The aim of this study was to analyze locomotion-related activity of the motor cortex during BW and compare it with that during FW. For this purpose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 79 4  شماره 

صفحات  -

تاریخ انتشار 1998