Centroid neural network adaptive resonance theory for vector quantization

نویسندگان

  • Tzu-Chao Lin
  • Pao-Ta Yu
چکیده

In this paper, a novel unsupervised competitive learning algorithm, called the centroid neural network adaptive resonance theory (CNN-ART) algorithm, is proposed to relieve the dependence on the initial codewords of the codebook in contrast to the conventional algorithms with vector quantization in lossy image compression. The design of the CNN-ART algorithm is mainly based on the adaptive resonance theory structure, and then a gradient-descent-based learning rule is derived so that the CNN-ART algorithm does not require a predetermined schedule for learning rate. Furthermore, the appropriate initial weights obtained by the CNN-ART algorithm can be applied as an initial codebook for the Linde–Buzo–Gray (LBG) algorithm such that the compression performance can be greatly improved. In this paper, the extensive simulations demonstrate that the CNN-ART algorithm does outperform other algorithms like LBG, self-organizing feature map and di8erential competitive learning. ? 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

A novel approach for vector quantization using a neural network, mean shift, and principal component analysis-based seed re-initialization

In this paper, a hybrid approach for vector quantization (VQ) is proposed for obtaining the better codebook. It is modified and improved based on the centroid neural network adaptive resonance theory (CNN-ART) and the enhanced Linde–Buzo–Gray (LBG) approaches to obtain the optimal solution. Three modules, a neural net (NN)-based clustering, a mean shift (MS)-based refinement, and a principal co...

متن کامل

Study of Neural Network Models for Security Assessment in Power Systems

This paper presents the application of different Neural Network (NN) models for classifying the power system states as secure/insecure. Traditional method of security evaluation involves performing load flow and transient stability analysis for each contingency, making it infeasible for real time application. Pattern Recognition (PR) approach is recognized as an alternative tool. The NN models ...

متن کامل

Performance-guided Neural Network for Rapidly Self-Organising Active Network Management

We present a neural network for real-time learning and mapping of patterns using an external performance indicator. In a non-stationary environment where new patterns are introduced over time, the learning process utilises a novel snap-drift algorithm that performs fast, convergent, minimalist learning (snap) when the overall network performance is poor and slower, more cautious learning (drift...

متن کامل

کاهش رنگ تصاویر با شبکه‌های عصبی خودسامانده چندمرحله‌ای و ویژگی‌های افزونه

Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2003