HIGHLIGHTED TOPIC Pulmonary Circulation and Hypoxia Activation of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin is necessary for hypoxia-induced pulmonary artery adventitial fibroblast proliferation
نویسندگان
چکیده
Gerasimovskaya, Evgenia V., Doug A. Tucker, and Kurt R. Stenmark. Activation of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin is necessary for hypoxia-induced pulmonary artery adventitial fibroblast proliferation. J Appl Physiol 98: 722–731, 2005. First published October 22, 2004; doi:10.1152/ japplphysiol.00715.2004.—In contrast to cell types in which exposure to hypoxia causes a general reduction of metabolic activity, a remarkable feature of pulmonary artery adventitial fibroblasts is their ability to proliferate in response to hypoxia. Previous studies have suggested that ERK1/2, phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) are activated by hypoxia and play a role in a variety of cell responses. However, the pathways involved in mediating hypoxia-induced proliferation are largely unknown. Using pharmacological inhibitors, we established that PI3K-Akt, mTOR-p70 ribosomal protein S6 kinase (p70S6K), and EKR1/2 signaling pathways play a critical role in hypoxia-induced adventitial fibroblast proliferation. We found that exposure of serum-starved fibroblasts to 3% O2 resulted in a time-dependent activation of PI3K and transient phosphorylation of Akt. However, activation of PI3K was not required for activation of ERK1/2, implying a parallel involvement of these pathways in the proliferative response of fibroblasts to hypoxia. We found that hypoxia induced significant increases in mTOR, p70S6K, 4E-BP1, and S6 ribosomal protein phosphorylation, as well as dramatic increases in p70S6K activity. The activation of p70S6K/S6 pathway was sensitive to inhibition by rapamycin and LY294002, indicating that mTOR and PI3K/Akt are upstream signaling regulators. However, the magnitude of hypoxia-induced p70S6K activity and phosphorylation suggests involvement of additional signaling pathways. Thus our data demonstrate that hypoxia-induced adventitial fibroblast proliferation requires activation and interaction of PI3K, Akt, mTOR, p70S6K, and ERK1/2 and provide evidence for hypoxic regulation of protein translational pathways in cells exhibiting the capability to proliferate under hypoxic conditions.
منابع مشابه
HIGHLIGHTED TOPIC Pulmonary Circulation and Hypoxia Egr-1 antisense oligonucleotides inhibit hypoxia-induced proliferation of pulmonary artery adventitial fibroblasts
Banks, Mark F., Evgenia V. Gerasimovskaya, Doug A. Tucker, Maria G. Frid, Todd C. Carpenter, and Kurt R. Stenmark. Egr-1 antisense oligonucleotides inhibit hypoxia-induced proliferation of pulmonary artery adventitial fibroblasts. J Appl Physiol 98: 732–738, 2005. First published October 8, 2004; doi:10.1152/japplphysiol. 00821.2004.—In most mammalian species, chronic exposure to hypoxia leads ...
متن کاملThioredoxin-1 mediates hypoxia-induced pulmonary artery smooth muscle cell proliferation.
Pathological pulmonary artery smooth muscle cell (PASMC) proliferation contributes to pulmonary vascular remodeling in pulmonary hypertensive diseases associated with hypoxia. Both the hypoxia-inducible factor (HIF) and phosphatidylinositol 3-kinase (PI3K)/serine/threonine kinase (Akt) pathways have been implicated in hypoxia-induced PASMC proliferation. Thioredoxin-1 (Trx1) is a ubiquitously e...
متن کاملEffects of HIV protease inhibitors on progression of monocrotaline- and hypoxia-induced pulmonary hypertension in rats.
BACKGROUND Pulmonary hypertension (PH) is among the complications of HIV infection. Combination antiretroviral therapy may influence the progression of HIV-related PH. Because Akt signaling is a potential molecular target of HIV protease inhibitors (HPIs), we hypothesized that these drugs altered monocrotaline- and hypoxia-induced PH in rats by downregulating the Akt pathway, thereby inhibiting...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملApelin inhibits the proliferation and migration of rat PASMCs via the activation of PI3K/Akt/mTOR signal and the inhibition of autophagy under hypoxia
Apelin is highly expressed in the lungs, especially in the pulmonary vasculature, but the functional role of apelin under pathological conditions is still undefined. Hypoxic pulmonary hypertension is the most common cause of acute right heart failure, which may involve the remodeling of artery and regulation of autophagy. In this study, we determined whether treatment with apelin regulated the ...
متن کامل