Rationally designed micropores within a metal-organic framework for selective sorption of gas molecules.
نویسندگان
چکیده
A microporous metal-organic framework, MOF, Cu(FMA)(4,4'-Bpe)0.5 (3a, FMA = fumarate; 4,4'-Bpe = 4,4'-Bpe = trans-bis(4-pyridyl)ethylene) was rationally designed from a primitive cubic net whose pores are tuned by double framework interpenetration. With pore cavities of about 3.6 A, which are interconnected by pore windows of 2.0 x 3.2 A, 3a shows highly selective sorption behaviors of gas molecules.
منابع مشابه
Selective gas sorption within a dynamic metal-organic framework.
A microporous metal-organic framework 1 Co(NDC)(4,4'-Bipy)(0.5).G(x) (NDC = 2,6-naphthalenedicarboxylate; 4,4'-Bipy = 4,4'-bipyridine; G = guest molecules) was synthesized and structurally characterized of a doubly interpenetrated primitive cubic net. To make use of the framework flexibility, 1 was activated at temperatures of 150 and 200 degrees C to form 1a and 1b, respectively, exhibiting hi...
متن کاملA triply interpenetrated microporous metal-organic framework for selective sorption of gas molecules.
A microporous metal-organic framework Zn(ADC)(4,4'-Bpe)(0.5).xG [1; ADC = 4,4'-azobenzenedicarboxylate, 4,4'-Bpe = trans-bis(4-pyridyl)ethylene, G = guest molecules] with a triply interpenetrative primitive cubic net was synthesized and characterized. With pores of about 3.4 x 3.4 A, the activated 1a exhibits highly selective sorption behavior toward H(2)/N(2), H(2)/CO, and CO(2)/CH(4).
متن کاملA robust highly interpenetrated metal-organic framework constructed from pentanuclear clusters for selective sorption of gas molecules.
A three-dimensional microporous metal-organic framework, Zn(5)(BTA)(6)(TDA)(2)·15DMF·8H(2)O (1; HBTA = 1,2,3-benzenetriazole; H(2)TDA = thiophene-2,5-dicarboxylic acid), comprising pentanuclear [Zn(5)] cluster units, was obtained through an one-pot solvothermal reaction of Zn(NO(3))(2), 1,2,3-benzenetriazole, and thiophene-2,5-dicarboxylate. The activated 1 displays type-I N(2) gas sorption beh...
متن کاملHydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies.
A highly stable porous lanthanide metal-organic framework, Y(BTC)(H2O).4.3H2O (BTC = 1,3,5-benzenetricarboxylate), with pore size of 5.8 A has been constructed and investigated for hydrogen storage. Gas sorption measurements show that this porous MOF exhibits highly selective sorption behaviors of hydrogen over nitrogen gas molecules and can take up hydrogen of about 2.1 wt % at 77 K and 10 bar...
متن کاملMetal-organic frameworks with functional pores for recognition of small molecules.
Molecular recognition, an important process in biological and chemical systems, governs the diverse functions of a variety of enzymes and unique properties of some synthetic receptors. Because molecular recognition is based on weak interactions between receptors and substrates, the design and assembly of synthetic receptors to mimic biological systems and the development of novel materials to d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inorganic chemistry
دوره 46 4 شماره
صفحات -
تاریخ انتشار 2007