Category O over a Deformation of the Symplectic Oscillator Algebra
نویسندگان
چکیده
We discuss the representation theory of Hf , which is a deformation of the symplectic oscillator algebra sp(2n) ⋉ hn, where hn is the ((2n+1)-dimensional) Heisenberg algebra. We first look at a more general algebra with a triangular decomposition. Assuming the PBW theorem, and one other hypothesis, we show that the BGG category O is abelian, finite length, and self-dual. We decompose O as a direct sum of blocks O(λ), and show that each block is a highest weight category. In the second part, we focus on the case Hf for n = 1, where we prove all these assumptions, as well as the PBW theorem.
منابع مشابه
Quantized Symplectic Oscillator Algebras of Rank One
A quantized symplectic oscillator algebra of rank 1 is a PBW deformation of the smash product of the quantum plane with Uq(sl2). We study its representation theory, and in particular, its category O.
متن کاملar X iv : m at h / 04 05 17 6 v 3 [ m at h . R T ] 1 7 N ov 2 00 4 QUANTIZED SYMPLECTIC OSCILLATOR ALGEBRAS OF RANK ONE
A quantized symplectic oscillator algebra of rank 1 is a PBW deformation of the smash product of the quantum plane with Uq(sl2). We study its representation theory, and in particular, its category O.
متن کاملar X iv : m at h / 04 05 17 6 v 4 [ m at h . R T ] 1 6 Ju n 20 06 QUANTIZED SYMPLECTIC OSCILLATOR ALGEBRAS OF RANK ONE
A quantized symplectic oscillator algebra of rank 1 is a PBW deformation of the smash product of the quantum plane with Uq(sl2). We study its representation theory, and in particular, its category O.
متن کاملN ov 2 00 5 CATEGORY O OVER SKEW GROUP RINGS
We study the BGG Category O over a skew group ring, involving a finite group acting on a regular triangular algebra. We relate the representation theory of the algebra to Clifford theory for the skew group ring, and obtain results on block decomposition, semisimplicity, and enough projectives. O is also shown to be a highest weight category; the BGG Reciprocity formula is slightly different bec...
متن کاملJa n 20 06 CATEGORY O OVER SKEW GROUP RINGS
We study the BGG Category O over a skew group ring, involving a finite group acting on a regular triangular algebra. We relate the representation theory of the algebra to Clifford theory for the skew group ring, and obtain results on block decomposition, semisimplicity, and enough projectives. O is also shown to be a highest weight category; the BGG Reciprocity formula is slightly different bec...
متن کامل