Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning
نویسندگان
چکیده
This paper develops a statistical learning approach to identify potentially new high-temperature ferroelectric piezoelectric perovskite compounds. Unlike most computational studies on crystal chemistry, where the starting point is some form of electronic structure calculation, we use a data-driven approach to initiate our search. This is accomplished by identifying patterns of behaviour between discrete scalar descriptors associated with crystal and electronic structure and the reported Curie temperature (TC) of known compounds; extracting design rules that govern critical structure-property relationships; and discovering in a quantitative fashion the exact role of these materials descriptors. Our approach applies linear manifold methods for data dimensionality reduction to discover the dominant descriptors governing structure-property correlations (the 'genes') and Shannon entropy metrics coupled to recursive partitioning methods to quantitatively assess the specific combination of descriptors that govern the link between crystal chemistry and TC (their 'sequencing'). We use this information to develop predictive models that can suggest new structure/chemistries and/or properties. In this manner, BiTmO3-PbTiO3 and BiLuO3-PbTiO3 are predicted to have a TC of 730°C and 705°C, respectively. A quantitative structure-property relationship model similar to those used in biology and drug discovery not only predicts our new chemistries but also validates published reports.
منابع مشابه
Piezoelectric scattering limited mobility of hybrid organic-inorganic perovskites CH3NH3PbI3
Carrier mobility is one of the most important parameters for semiconducting materials and their use in optoelectronic devices. Here we report a systematic first principles analysis of the acoustic phonon scattering mechanism that limits the mobility of CH3NH3PbI3 (MAPbI3) perovskites. Due to the unique hybrid organic-inorganic structure, the mechanical, electronic and transport properties are d...
متن کاملHigh-sensitivity piezoelectric perovskites for magnetoelectric composites
A highly topical set of perovskite oxides are high-sensitivity piezoelectric ones, among which Pb(Zr,Ti)O3 at the morphotropic phase boundary (MPB) between ferroelectric rhombohedral and tetragonal polymorphic phases is reckoned a case study. Piezoelectric ceramics are used in a wide range of mature, electromechanical transduction technologies like piezoelectric sensors, actuators and ultrasoun...
متن کاملFocus on properties and applications of perovskites
Missouri University of Science and Technology, USA 2 Tsinghua University, People’s Republic of China University of Rennes 1, France E-mail: doganf@mst.edu, honglin@mail.tsinghua.edu.cn, maryline.guilloux-viry@univrennes1.fr and octavio. pena@univ-rennes1.fr Perovskite materials with the same crystal structure as CaTiO3 exhibit intriguing and unusual physical properties that have been extensivel...
متن کاملStructural, Magnetic and Catalytic Properties of Non-Stoichiometric Lanthanum Ferrite Nano-Perovskites in Carbon Monoxide Oxidation
Perovskite-type oxides of LaFe(1+x)O(3+δ) (x = 0.0, 0.2, 0.5 and 0.7) were synthesized by citrate sol–gel methodto ensure the formation of nanosized perovskites. The physicochemical properties of these LaFe(1+x)O(3+δ)materials were characterized by thermal gravimetric/differential analyses, Fourier transform infraredspectroscopy, X-ray powder diffraction, scanning electron and...
متن کاملChemical Approaches to Addressing the Instability and Toxicity of Lead-Halide Perovskite Absorbers.
The impressive rise in efficiencies of solar cells employing the three-dimensional (3D) lead-iodide perovskite absorbers APbI3 (A = monovalent cation) has generated intense excitement. Although these perovskites have remarkable properties as solar-cell absorbers, their potential commercialization now requires a greater focus on the materials' inherent shortcomings and environmental impact. This...
متن کامل