On lattice reduction for polynomial matrices

نویسندگان

  • Thom Mulders
  • Arne Storjohann
چکیده

A simple algorithm for lattice reduction of polynomial matrices is described and analysed. The algorithm is adapted and applied to various tasks, including rank profile and determinant computation, transformation to Hermite and Popov canonical form, polynomial linear system solving and short vector computation. © 2003 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the polynomial numerical hulls of matrices

In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.

متن کامل

Symplectic Lattice Reduction and NTRU

NTRU is a very efficient public-key cryptosystem based on polynomial arithmetic. Its security is related to the hardness of lattice problems in a very special class of lattices. This article is motivated by an interesting peculiar property of NTRU lattices. Namely, we show that NTRU lattices are proportional to the so-called symplectic lattices. This suggests to try to adapt the classical reduc...

متن کامل

Some Results on Polynomial Numerical Hulls of Perturbed Matrices

In this paper, the behavior of the pseudopolynomial numerical hull of a square complex matrix with respect to structured perturbations and its radius is investigated.

متن کامل

An LLL-Reduction Algorithm with Quasi-linear Time Complexity1

We devise an algorithm, e L, with the following specifications: It takes as input an arbitrary basis B = (bi)i ∈ Zd×d of a Euclidean lattice L; It computes a basis of L which is reduced for a mild modification of the Lenstra-Lenstra-Lovász reduction; It terminates in time O(dβ + dβ) where β = log max ‖bi‖ (for any ε > 0 and ω is a valid exponent for matrix multiplication). This is the first LLL...

متن کامل

An LLL-reduction algorithm with quasi-linear time complexity

We devise an algorithm, e L, with the following specifications: It takes as input an arbitrary basis B = (bi)i ∈ Zd×d of a Euclidean lattice L; It computes a basis of L which is reduced for a mild modification of the Lenstra-Lenstra-Lovász reduction; It terminates in time O(dβ + dβ) where β = log max ‖bi‖ (for any ε > 0 and ω is a valid exponent for matrix multiplication). This is the first LLL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2003