A Comment on Matiyasevich’s Identity #0102 with Bernoulli Numbers
نویسنده
چکیده
We connect and generalize Matiyasevich’s identity #0102 with Bernoulli numbers and an identity of Candelpergher, Coppo and Delabaere on Ramanujan summation of the divergent series of the infinite sum of the harmonic numbers. The formulae are analytic continuation of Euler sums and lead to new recursion relations for derivatives of Bernoulli numbers. The techniques used are contour integration, generating functions and divergent series.
منابع مشابه
New identities involving Bernoulli and Euler polynomials
Using the finite difference calculus and differentiation, we obtain several new identities for Bernoulli and Euler polynomials; some extend Miki’s and Matiyasevich’s identities, while others generalize a symmetric relation observed by Woodcock and some results due to Sun.
متن کاملCarlitz’s Identity for the Bernoulli Numbers and Zeon Algebra
In this work we provide a new short proof of Carlitz’s identity for the Bernoulli numbers. Our approach is based on the ordinary generating function for the Bernoulli numbers and a Grassmann-Berezin integral representation of the Bernoulli numbers in the context of the Zeon algebra, which comprises an associative and commutative algebra with nilpotent generators.
متن کاملUnification of the Bernstein-type polynomials and their applications
*Correspondence: [email protected] Department of Mathematics, Faculty of Science, University of Akdeniz, Antalya, TR-07058, Turkey Abstract In this paper, we investigate some new identities related to the unification of the Bernstein-type polynomials, Bernoulli polynomials, Euler numbers and Stirling numbers of the second kind. We also give some remarks and applications of the Bernstein-ty...
متن کاملA Note on the Modified q - Bernoulli Numbers and Polynomials with Weight α
and Applied Analysis 3 we derive some interesting identities and relations on the modified q-Bernoulli numbers and polynomials. 2. The Modified q-Bernoulli Numbers and Polynomials with Weight α In this section, we assume α ∈ Q. Now, we define the modified q-Bernoulli numbers with weight α B̃ α n,q as follows:
متن کاملModified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)
The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...
متن کامل