Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system
نویسندگان
چکیده
The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method's implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System's C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis.
منابع مشابه
A Bayesian spatio-temporal method for disease outbreak detection
A system that monitors a region for a disease outbreak is called a disease outbreak surveillance system. A spatial surveillance system searches for patterns of disease outbreak in spatial subregions of the monitored region. A temporal surveillance system looks for emerging patterns of outbreak disease by analyzing how patterns have changed during recent periods of time. If a non-spatial, non-te...
متن کاملSpatio-temporal analysis of the covid-19 impacts on the using Chicago urban shared bicycles by tensor-based approach
Cycling is a phenomenon in urban transportation that has the ability to allocate a specific location at any moment in time. Accordingly, spatial analysis of bicycle trips can be accompanied by temporal analysis. The use of a GIS environment is commonly recommended to display the extent of the phenomenon's spatial changes. However, in order to apply and display changes over time, it will requir...
متن کاملBuilding a Better Syndromic Surveillance System: the New York City Experience
Introduction The New York City (NYC) syndromic surveillance system has monitored syndromes from NYC emergency department (ED) visits since 2001, using the temporal and spatial scan statistic in SaTScan for aberration detection. Since our syndromic system was initiated, alternative methods have been proposed for outbreak identification. Our goal was to evaluate methods for outbreak detection and...
متن کاملEvaluation of Outbreak Detection Performance Using Multi-Stream Syndromic Surveillance for Influenza-Like Illness in Rural Hubei Province, China: A Temporal Simulation Model Based on Healthcare-Seeking Behaviors
BACKGROUND Syndromic surveillance promotes the early detection of diseases outbreaks. Although syndromic surveillance has increased in developing countries, performance on outbreak detection, particularly in cases of multi-stream surveillance, has scarcely been evaluated in rural areas. OBJECTIVE This study introduces a temporal simulation model based on healthcare-seeking behaviors to evalua...
متن کاملSpatio-Temporal Variation of Suspended Sediment Concentration at Downstream of a Sand Mine
The growing population led to greater human need to use natural resources such as sand and gravel mines. Direct removal of sands from the bed river leads to increase suspended sediment concentrations in downstream of harvested area and creates other problems viz. filling reservoirs, change in hydraulic characteristics of the channel and environmental damages. However, the range of temporal and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017