Block Orthogonal Polynomials: II. Hermite and Laguerre Standard Block Orthogonal Polynomials
نویسنده
چکیده
The standard block orthogonal (SBO) polynomials Pi;n(x), 0 ≤ i ≤ n are real polynomials of degree n which are orthogonal with respect to a first Euclidean scalar product to polynomials of degree less than i. In addition, they are mutually orthogonal with respect to a second Euclidean scalar product. Applying the general results obtained in a previous paper, we determine and investigate these polynomials when the first scalar product corresponds to Hermite (resp. Laguerre) polynomials. These new sets of polynomials, we call Hermite (resp. Laguerre) SBO polynomials, provide a basis of functional spaces well-suited for some applications requiring to take into account special linear constraints which can be recast into an Euclidean orthogonality relation. PACS numbers: 02.10.Ud, 02.30.Gp, 02.30.Mv, 21.60.-n, 31.15.Ew, 71.15.Mb
منابع مشابه
Formulas for the Fourier Series of Orthogonal Polynomials in Terms of Special Functions
An explicit formula for the Fourier coef cients of the Legendre polynomials can be found in the Bateman Manuscript Project. However, formulas for more general classes of orthogonal polynomials do not appear to have been worked out. Here we derive explicit formulas for the Fourier series of Gegenbauer, Jacobi, Laguerre and Hermite polynomials. The methods described here apply in principle to an...
متن کاملTwo-step Darboux Transformations and Exceptional Laguerre Polynomials
It has been recently discovered that exceptional families of SturmLiouville orthogonal polynomials exist, that generalize in some sense the classical polynomials of Hermite, Laguerre and Jacobi. In this paper we show how new families of exceptional orthogonal polynomials can be constructed by means of multiple-step algebraic Darboux transformations. The construction is illustrated with an examp...
متن کاملHIGHER ORDER MATCHING POLYNOMIALS AND d-ORTHOGONALITY
We show combinatorially that the higher-order matching polynomials of several families of graphs are d-orthogonal polynomials. The matching polynomial of a graph is a generating function for coverings of a graph by disjoint edges; the higher-order matching polynomial corresponds to coverings by paths. Several families of classical orthogonal polynomials—the Chebyshev, Hermite, and Laguerre poly...
متن کاملOrthogonal Polynomials and Generalized Oscillator Algebras
For any orthogonal polynomials system on real line we construct an appropriate oscillator algebra such that the polynomials make up the eigenfunctions system of the oscillator hamiltonian. The general scheme is divided into two types: a symmetric scheme and a non-symmetric scheme. The general approach is illustrated by the examples of the classical orthogonal polynomials: Hermite, Jacobi and La...
متن کاملSub-exponentially Localized Kernels and Frames Induced by Orthogonal Expansions
The aim of this paper is to construct sup-exponentially localized kernels and frames in the context of classical orthogonal expansions, namely, expansions in Jacobi polynomials, spherical harmonics, orthogonal polynomials on the ball and simplex, and Hermite and Laguerre functions.
متن کامل