A new bivariate exponential distribution for modeling moderately negative dependence

نویسندگان

  • Muhammad Mohsin
  • Hannes Kazianka
  • Jürgen Pilz
  • Albrecht Gebhardt
چکیده

This paper introduces a new bivariate exponential distribution, called the Bivariate Affine-Linear Exponential distribution, to model moderately negative dependent data. The construction and characteristics of the proposed bivariate distribution are presented along with estimation procedures for the model parameters based on maximum likelihood and objective Bayesian analysis. We derive Jeffreys prior and discuss its frequentist properties based on a simulation study and MCMC sampling techniques. A real data set of mercury concentration in largemouth bass from Florida lakes is used to illustrate the methodology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stress-Strength and Ageing Intensity Analysis via a New Bivariate Negative Gompertz-Makeham Model

In Demography and modelling mortality (or failure) data the univariate Makeham-Gompertz is well-known for its extension of exponential distribution. Here, a bivariate class of Gompertz--Makeham distribution is constructed based on random number of extremal events. Some reliability properties such as ageing intensity, stress-strength based on competing risks are given. Also dependence properties...

متن کامل

On Bivariate Generalized Exponential-Power Series Class of Distributions

In this paper, we introduce a new class of bivariate distributions by compounding the bivariate generalized exponential and power-series distributions. This new class contains the bivariate generalized exponential-Poisson, bivariate generalized exponential-logarithmic, bivariate generalized exponential-binomial and bivariate generalized exponential-negative binomial distributions as specia...

متن کامل

On Bivariate Generalized Exponential-Power Series Class of Distributions

In this paper, we introduce a new class of bivariate distributions by compounding the bivariate generalized exponential and power-series distributions. This new class contains some new sub-models such as the bivariate generalized exponential distribution, the bivariate generalized exponential-poisson, -logarithmic, -binomial and -negative binomial distributions. We derive different properties o...

متن کامل

Bivariate Exponential Distributions Using Linear Structures

We derive bivariate exponential distributions using independent auxiliary random variables. We develop separate models for positive and negative correlations between the exponentially distributed variates. To obtain a positive correlation, we define a linear relation between the variates X and Y of the form Y = aX +Z where a is a positive constant and Z is independent of X. To obtain exponentia...

متن کامل

On Bivariate Reversed Hazard Rates

In this paper we discuss various definitions of bivariate reversed hazard rate and their properties. An exponential representation of bivariate distribution using reversed hazard rates is given and we also develop a new family of bivariate distributions using bivariate reversed hazard rate. Finally we give a local dependence measure using bivariate reversed hazard rates and study its properties...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistical Methods and Applications

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2014