An efficient framework for estimation of muscle fiber orientation using ultrasonography
نویسندگان
چکیده
BACKGROUND Muscle fiber orientation (MFO) is an important parameter related to musculoskeletal functions. The traditional manual method for MFO estimation in sonograms was labor-intensive. The automatic methods proposed in recent years also involved voting procedures which were computationally expensive. METHODS In this paper, we proposed a new framework to efficiently estimate MFO in sonograms. We firstly employed Multi-scale Vessel Enhancement Filtering (MVEF) to enhance fascicles in the sonograms and then the enhanced images were binarized. Finally, line-shaped patterns in the binary map were detected one by one, according to their shape properties. Specifically speaking, for the long-and-thinner regions, the orientation of the targeted muscle fibre was directly computed, without voting procedures, as the orientation of the ellipse that had the same normalized second central moments as the region. For other cases, the Hough voting procedure might be employed for orientation estimation. The performance of the algorithm was evaluated using four various group of sonograms, which are a dataset used in previous reports, 33 sonograms of gastrocnemius from 11 young healthy subjects, one sonogram sequence including 200 frames from a subject and 256 frames from an aged subject with cerebral infarction respectively. RESULTS It was demonstrated in the experiments that measurements of the proposed method agreed well with those of the manual method and achieved much more efficiency than the previous Re-voting Hough Transform (RVHT) algorithm. CONCLUSIONS Results of the experiments suggested that, without compromising the accuracy, in the proposed framework the previous orientation estimation algorithm was accelerated by reduction of its dependence on voting procedures.
منابع مشابه
Estimating Full Regional Skeletal Muscle Fibre 2 Curvature from b - Mode Ultrasound Images Using 3 Convolutional - Deconvolutional Neural Networks 4
Direct measurement of strain within muscle is important for understanding muscle 8 function in health and disease. Current technology (kinematics, dynamometry, electromyography) 9 provides limited ability to measure strain within muscle. Regional fiber orientation and length are 10 related with active/passive strain within muscle. Currently, ultrasound imaging provides the only 11 non-invasive ...
متن کاملDetermination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملInvestigation of Buckling Analysis of Epoxy/ Nanoclay/ Carbon Fiber Hybrid Laminated Nanocomposite: Using VARTM Technique for Preparation
In the current study the effect of nanoclay content and carbon fiber orientation on the buckling properties of epoxy/nanoclay/ carbon fiber orientation is investigated. Buckling samples were prepared with 1, 3 and 5 wt% of nanoclay and 0, 30 and 45 degrees of fiber orientations based on VARTM technique. The results obtained from the buckling tests showed that adding 1wt% of nanoclay into the pu...
متن کاملAutomatic thickness estimation for skeletal muscle in ultrasonography: evaluation of two enhancement methods
BACKGROUND Ultrasonography is a convenient technique to investigate muscle properties and has been widely used to look into muscle functions since it is non-invasive and real-time. Muscle thickness, a quantification which can effectively reflect the muscle activities during muscle contraction, is an important measure for musculoskeletal studies using ultrasonography. The traditional manual oper...
متن کاملStiffness Prediction of Beech Wood Flour Polypropylene Composite by using Proper Fiber Orientation Distribution Function
One of the most famous methods to predict the stiffness of short fiber composites is micromechanical modeling. In this study, a Representative Volume Element (RVE) of a beech wood flour natural composite has been designed and the orientation averaging approach has been utilized to predict its stiffness tensor. The novelty of this work is in finding the proper fiber orientation distribution func...
متن کامل