Elliptic Equations in Divergence Form with Partially Bmo Coefficients

نویسنده

  • HONGJIE DONG
چکیده

The solvability in Sobolev spaces is proved for divergence form second order elliptic equations in the whole space, a half space, and a bounded Lipschitz domain. For equations in the whole space or a half space, the leading coefficients a are assumed to be measurable in one direction and have small BMO semi-norms in the other directions. For equations in a bounded domain, additionally we assume that a have small BMO semi-norms in a neighborhood of the boundary of the domain. We give a unified approach of both the Dirichlet boundary problem and the conormal derivative problem. We also investigate elliptic equations in Sobolev spaces with mixed norms under the same assumptions on the coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Equations with Bmo Coefficients in Lipschitz Domains

In this paper, we study inhomogeneous Dirichlet problems for elliptic equations in divergence form. Optimal regularity requirements on the coefficients and domains for the W 1,p (1 < p < ∞) estimates are obtained. The principal coefficients are supposed to be in the John-Nirenberg space with small BMO semi-norms. The domain is supposed to have Lipschitz boundary with small Lipschitz constant. T...

متن کامل

Hardy and BMO spaces associated to divergence form elliptic operators

Consider a second order divergence form elliptic operator L with complex bounded coefficients. In general, operators related to it (such as the Riesz transform or square function) lie beyond the scope of the Calderón-Zygmund theory. They need not be bounded in the classical Hardy, BMO and even some Lp spaces. In this work we develop a theory of Hardy and BMO spaces associated to L, which includ...

متن کامل

Parabolic and Elliptic Systems in Divergence Form with Variably Partially BMO Coefficients

We establish the solvability of second order divergence type parabolic systems in Sobolev spaces. The leading coefficients are assumed to be only measurable in one spatial direction on each small parabolic cylinder with the spatial direction allowed to depend on the cylinder. In the other orthogonal directions and the time variable, the coefficients have locally small mean oscillations. We also...

متن کامل

On Divergence-free Drifts

We investigate the validity and failure of Liouville theorems and Harnack inequalities for parabolic and elliptic operators with low regularity coefficients. We are particularly interested in operators of the form ∂t−∆+ b ·∇ resp. −∆+ b ·∇ with a divergence-free drift b. We prove the Liouville theorem and Harnack inequality when b ∈ L∞(BMO) resp. b ∈ BMO−1 and provide a counterexample demonstra...

متن کامل

N ov 2 00 6 Hardy and BMO spaces associated to divergence form elliptic operators

Consider the second order divergence form elliptic operator L with complex bounded coefficients. In general, the operators related to it (such as Riesz transform or square function) lie beyond the scope of the Calderón-Zygmund theory. They need not be bounded in the classical Hardy, BMO and even some Lp spaces. In this work we generalize the classical approach and develop a theory of Hardy and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009