Uncertainty quantification for chaotic computational fluid dynamics q

نویسندگان

  • Y. Yu
  • M. Zhao
  • T. Lee
  • N. Pestieau
  • W. Bo
  • J. Glimm
  • J. W. Grove
چکیده

We seek error models for simulations that model chaotic flow. Stable statistics for the solution and for the error are obtained after suitable averaging procedures. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantification of Uncertainty in Computational Fluid Dynamics

This review covers Verification, Validation, Confirmation and related subjects for computational fluid dynamics (CFD), including error taxonomies, error estimation and banding, convergence rates, surrogate estimators, nonlinear dynamics, and error estimation for grid adaptation vs Quantification of Uncertainty.

متن کامل

Uncertainty Quantification in Computational Fluid Dynamics

Bargaining with reading habit is no need. Reading is not kind of something sold that you can take or not. It is a thing that will change your life to life better. It is the thing that will give you many things around the world and this universe, in the real world and here after. As what will be given by this uncertainty quantification in computational fluid dynamics, how can you bargain with th...

متن کامل

Polynomial chaos based uncertainty quantification in Hamiltonian, multi-time scale, and chaotic systems

Polynomial chaos is a powerful technique for propagating uncertainty through ordinary and partial differential equations. Random variables are expanded in terms of orthogonal polynomials and differential equations are derived for the expansion coefficients. Here we study the structure and dynamics of these differential equations when the original system has Hamiltonian structure, has multiple t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006