A Regularized Sqp Method with Convergence to Second-order Optimal Points
نویسندگان
چکیده
Regularized and stabilized sequential quadratic programming methods are two classes of sequential quadratic programming (SQP) methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that provides a strong connection between augmented Lagrangian methods and stabilized SQP methods. The method is formulated as a regularized SQP method with an implicit safeguarding strategy based on minimizing a bound-constrained primal-dual augmented Lagrangian. Each iteration involves the solution of a regularized quadratic program (QP) that is equivalent to a strictly convex bound-constrained QP based on minimizing a quadratic model of the augmented Lagrangian. The solution of the QP subproblem defines a descent direction for a flexible line search that provides a sufficient decrease in a primal-dual augmented Lagrangian merit function. Under certain conditions, the method is guaranteed to converge to a point satisfying the first-order Karush-Kuhn-Tucker (KKT) conditions. In this paper, the regularized SQP method is extended to allow convergence to points satisfying certain second-order KKT conditions. The method is based on performing a flexible line search along a direction formed from the solution of a strictly convex regularized quadratic programming subproblem and, when one exists, a direction of negative curvature for the primal-dual augmented Lagrangian. It is shown that with an appropriate choice of termination condition, the method terminates in a finite number of iterations. As in the first-order case, the method is formulated as a regularized SQP method with an augmented Lagrangian safeguarding strategy. It is shown that this safeguarding becomes relevant only when the iterates are converging to an infeasible stationary point of the constraint violations. Otherwise, the method terminates with a point that either satisfies the second-order necessary conditions for optimality, or fails to satisfy a weak second-order constraint qualification.
منابع مشابه
A Globally Convergent Stabilized Sqp Method: Superlinear Convergence
Regularized and stabilized sequential quadratic programming (SQP) methods are two classes of methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that allows convergence to points satisfying certain second-order KKT conditions (SIAM J. Optim., 23(4):198...
متن کاملA stabilized SQP method: superlinear convergence
Regularized and stabilized sequential quadratic programming (SQP) methods are two classes of methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a stabilized SQP method has been proposed that allows convergence to points satisfying certain secondorder KKT conditions (Report CCoM 13-04, Center f...
متن کاملA second-order sequential optimality condition associated to the convergence of optimization algorithms
Sequential optimality conditions have recently played an important role on the analysis of the global convergence of optimization algorithms towards first-order stationary points, justifying their stopping criteria. In this paper we introduce a sequential optimality condition that takes into account second-order information and that allows us to improve the global convergence assumptions of sev...
متن کاملA Stabilized Sqp Method: Global Convergence
Stabilized sequential quadratic programming (SQP) methods for nonlinear optimization are designed to provide a sequence of iterates with fast local convergence regardless of whether or not the active-constraint gradients are linearly dependent. This paper concerns the global convergence properties of a stabilized SQP method with a primal-dual augmented Lagrangian merit function. The proposed me...
متن کاملUsing Modified IPSO-SQP Algorithm to Solve Nonlinear Time Optimal Bang-Bang Control Problem
In this paper, an intelligent-gradient based algorithm is proposed to solve time optimal bang-bang control problem. The proposed algorithm is a combination of an intelligent algorithm called improved particle swarm optimization algorithm (IPSO) in the first stage of optimization process together with a gradient-based algorithm called successive quadratic programming method (SQP) in the second s...
متن کامل