Component Selection and Smoothing in Multivariate Nonparametric Regression

نویسندگان

  • YI LIN
  • HAO HELEN ZHANG
چکیده

We propose a new method for model selection and model fitting in multivariate nonparametric regression models, in the framework of smoothing spline ANOVA. The “COSSO” is a method of regularization with the penalty functional being the sum of component norms, instead of the squared norm employed in the traditional smoothing spline method. The COSSO provides a unified framework for several recent proposals for model selection in linear models and smoothing spline ANOVA models. Theoretical properties, such as the existence and the rate of convergence of the COSSO estimator, are studied. In the special case of a tensor product design with periodic functions, a detailed analysis reveals that the COSSO does model selection by applying a novel soft thresholding type operation to the function components. We give an equivalent formulation of the COSSO estimator which leads naturally to an iterative algorithm. We compare the COSSO with MARS, a popular method that builds functional ANOVA models, in simulations and real examples. The COSSO method can be extended to classification problems and we compare its performance with those of a number of machine learning algorithms on real datasets. The COSSO gives very competitive performance in these studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric multivariate conditional distribution and quantile regression

In nonparametric multivariate regression analysis, one usually seeks methods to reduce the dimensionality of the regression function to bypass the difficulty caused by the curse of dimensionality. We study nonparametric estimation of multivariate conditional distribution and quantile regression via local univariate quadratic estimation of partial derivatives of bivariate copulas. Without restri...

متن کامل

Nonparametric Regression Applied to Quantitative Structure-Activity Relationships

Several nonparametric regressors have been applied to modeling quantitative structure-activity relationship (QSAR) data. The simplest regressor, the Nadaraya-Watson, was assessed in a genuine multivariate setting. Other regressors, the local linear and the shifted Nadaraya-Watson, were implemented within additive models--a computationally more expedient approach, better suited for low-density d...

متن کامل

Discussion: Multivariate Adaptive Regression Splines

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected].. Institute of Mathematical Statistics is collaborating wit...

متن کامل

Automatic Generalized Nonparametric Regression via Maximum Likelihood

A relatively recent development in nonparametric regression is the representation of spline-based smoothers as mixed model fits. In particular, generalized nonparametric regression (e.g. smoothingwith a binary response) corresponds to fitting a generalized linear mixedmodel. Automation, or data-driven smoothing parameter selection, can be achieved via (restricted) maximum likelihood estimation ...

متن کامل

Semiparametric regression models with additive nonparametric components and high dimensional parametric components

This paper concerns semiparametric regression models with additive nonparametric components and high dimensional parametric components under sparsity assumptions. To achieve simultaneous model selection for both nonparametric and parametric parts, we introduce a penalty that combines the adaptive empirical L2-norms of the nonparametric component functions and the SCAD penalty on the coefficient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007