Uncertainty Propagation in Long-Term Structured Regression on Evolving Networks
نویسندگان
چکیده
In long-term forecasting it is important to estimate the confidence of predictions, as they are often affected by errors that are accumulated over the prediction horizon. To address this problem, an effective novel iterative method is developed for Gaussian structured learning models in this study for propagating uncertainty in temporal graphs by modeling noisy inputs. The proposed method is applied for three long-term (up to 8 years ahead) structured regression problems on realworld evolving networks from the health and climate domains. The obtained empirical results and use case analysis provide evidence that the new approach allows better uncertainty propagation as compared to published alternatives.
منابع مشابه
Supplementary Material: Uncertainty Propagation in Long-term Structured Regression on Evolving Networks
In order to model the distribution of input variables, a reasonable assumption is that input variables x are generated by some process u, and that process has a Gaussian error. Thus, the distribution of input variables can be presented as ppxq N pu,Σxq. The new data point for prediction will be annotated as x . In the general case, we predict on the entire set of points representing a single sn...
متن کاملCommodity price uncertainty propagation in open-pit mine production planning by Latin hypercube sampling method
Production planning of an open-pit mine is a procedure during which the rock blocks are assigned to different production periods in a way that leads to the highest net present value (NPV) subject to some operational and technical constraints. This process becomes much more complicated by incorporation of the uncertainty existing in the input parameters. The commodity price uncertainty is among ...
متن کاملDifferent Methods of Long-Term Electric Load Demand Forecasting a Comprehensive Review
Long-term demand forecasting presents the first step in planning and developing future generation, transmission and distribution facilities. One of the primary tasks of an electric utility accurately predicts load demand requirements at all times, especially for long-term. Based on the outcome of such forecasts, utilities coordinate their resources to meet the forecasted demand using a least-co...
متن کاملDevelopment of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data
Deterioration models are important and essential part of any Pavement Management System (PMS). These models are used to predict future pavement situation based on existence condition, parameters causing deterioration and implications of various maintenance and rehabilitation policies on pavement. The majority of these models are based on roughness which is one of the most important indices in p...
متن کامل