Linear unmixing performance forecasting

نویسندگان

  • John Kerekes
  • Kristine Farrar
  • Nirmal Keshava
  • J. Kerekes
  • K. Farrar
  • N. Keshava
چکیده

The quantitative forecasting of hyperspectral system performance is an important capability at every stage of system development including system requirement definition, system design, and sensor operation. In support of this, Lincoln Laboratory has been developing an analytical modeling tool to predict end-to-end spectroradiometric remote sensing system performance. Recently, the model has been extended to more accurately depict complex natural scenes by including multiple classes in the target pixel through the use of a linear mixing model. Additionally, a linear unmixing algorithm has been implemented to predict retrieved fractional abundances and their associated errors due to both natural variability and corrupting noise sources. This paper describes the details of this multiple target class model enhancement. Comparisons are presented between the model predictions and measured spectral radiances, as well as unmixing results obtained from data collected by NASA’s EO-1 Hyperion space-based hyperspectral sensor. Additionally, results of an analysis using the enhanced model are presented to show the sensitivity of end member fractional abundance estimates to system parameters using linear unmixing techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

جداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA

Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...

متن کامل

An Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data

The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...

متن کامل

Geometrical Endmember Extraction and Linear Spectral Unmixing of Multispectral Image

Accurate mapping is prepared using Linear unmixing of satellite images. Endmember extraction contributes the unmixing accuracy. In this paper, Endmembers are extracted using different Geometrical algorithms like Pixel Purity Index (PPI), Nearest Finder (N-FINDR) and Sequential Maximum Angle Convex Cone (SMACC) algorithms. Extracted Endmembers are given as input for unmixing and it is attempted ...

متن کامل

Unmixing Analysis : Model Prediction Compared to Observed Results 1

The quantitative forecasting of spectral imaging system performance is an important capability. The ability to accurately predict the effects on utility of the data due to scene conditions, sensor performance, or even algorithm parameters, can be very important. To this end, an analytical modeling tool has been under development to predict end-to-end spectroradiometric remote sensing system per...

متن کامل

Unmixing Hyperspectral Images with Fuzzy Supervised Self-Organizing Maps

We propose a powerful alternative to customary linear spectral unmixing, with a new neural model, which achieves locally linear but globally non-linear unmixing. This enables unmixing with respect to a large number of endmembers, while traditional linear unmixing is limited to a handful of endmembers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001