Multi-Element High-Lift Configuration Design Optimization Using Viscous Continuous Adjoint Method
نویسندگان
چکیده
An adjoint-based Navier–Stokes design and optimization method for two-dimensional multi-element high-lift configurations is derived and presented. The compressible Reynolds-averaged Navier–Stokes equations are used as a flow model together with the Spalart–Allmaras turbulence model to account for high Reynolds number effects. When a viscous continuous adjoint formulation is used, the necessary aerodynamic gradient information is obtained with large computational savings over traditional finite difference methods. The high-lift configuration parallel design method uses a point-to-point matched multiblock grid system and the message passing interface standard for communication in both the flow and adjoint calculations. Airfoil shape, element positioning, and angle of attack are used as design variables. The prediction of high-lift flows around a baseline three-element airfoil configuration, denoted as 30P30N, is validated by comparison with available experimental data. Finally, several design results that verify the potential of the method for high-lift system design and optimization are presented. The design examples include a multi-element inverse design problem and the following optimization problems: lift coefficient maximization, lift-to-drag ratio maximization, and the maximum lift coefficient maximization problem for both the RAE2822 single-element airfoil and the 30P30N multi-element airfoil.
منابع مشابه
AIAA 2000–4741 Two-dimensional High-Lift Aerodynamic Optimization Using the Continuous Adjoint Method
An adjoint-based Navier-Stokes design and optimization method for two-dimensional multi-element high-lift configurations is derived and presented. The compressible Reynolds-Averaged Navier-Stokes (RANS) equations are used as a flow model together with the Spalart-Allmaras turbulence model to account for high Reynolds number effects. Using a viscous continuous adjoint formulation, the necessary ...
متن کاملAIAA 2002–0844 Design Optimization of High–Lift Configurations Using a Viscous Continuous Adjoint Method
An adjoint-based Navier-Stokes design and optimization method for two-dimensional multi-element high-lift configurations is derived and presented. The compressible Reynolds-Averaged Navier-Stokes (RANS) equations are used as a flow model together with the Spalart-Allmaras turbulence model to account for high Reynolds number effects. Using a viscous continuous adjoint formulation, the necessary ...
متن کاملTwo-dimensional High-Lift Aerodynamic Optimization Using the Continuous Adjoint Method
An adjoint-based Navier-Stokes design and optimization method for two-dimensional multi-element high-lift configurations is derived and presented. The compressible Reynolds-Averaged Navier-Stokes (RANS) equations are used as a flow model together with the Spalart-Allmaras turbulence model to account for high Reynolds number effects. Using a viscous continuous adjoint formulation, the necessary ...
متن کاملAIAA 2003-3957 Optimization of High-Lift Configurations Using a Newton–Krylov Algorithm
A gradient-based Newton–Krylov algorithm for aerodynamic shape optimization is applied to lift maximization of a multi-element landing configuration. The governing flow equations are the two-dimensional compressible Navier–Stokes equations in conjunction with a one-equation transport turbulence model. The objective function gradient is computed via the discrete-adjoint method. The design exampl...
متن کاملThe Discrete Adjoint Approach to Aerodynamic Shape Optimization
A viscous discrete adjoint approach to automatic aerodynamic shape optimization is developed, and the merits of the viscous discrete and continuous adjoint approaches are discussed. The viscous discrete and continuous adjoint gradients for inverse design and drag minimization cost functions are compared with finite-difference and complex-step gradients. The optimization of airfoils in two-dimen...
متن کامل