Image registration using Markov random coefficient and geometric transformation fields
نویسندگان
چکیده
Image Registration is central to different applications such as medical analysis, biomedical systems, image guidance, etc. In this paper we propose a new algorithm for multimodal image registration. A Bayesian formulation is presented in which a likelihood term is defined using an observation model based on coefficient and geometric fields. These coefficients, that represent the local intensity polynomial transformations, as the local geometric transformations, are modelled as prior information by means of Markov random fields. This probabilistic approach allows one to find optimal estimators by minimizing an energy function in terms of both fields, making the registration between the images possible.
منابع مشابه
Image Registration Using Markov Random Coefficient Fields
Image Registration is central to different applications such as medical analysis, biomedical systems, image guidance, etc. In this paper we propose a new algorithm for multi-modal image registration. A Bayesian formulation is presented in which a likelihood term is defined using an observation model based on linear intensity transformation functions. The coefficients of these transformations ar...
متن کاملRegistration of Temporal Ultrasonic Image Sequences Using Markov Random Fields
Ultrasound perfusion imaging is a rapid and inexpensive technique which enables observation of a dynamic process with high temporal resolution. The image acquisition is disturbed by various motion influences due to the acquisition procedure and patient motion. To extract valid information about perfusion for quantification and diagnostic purposes this influence must be compensated. In this work...
متن کاملNon-rigid Image Registration with Uniform Spherical Structure Patterns
Non-rigid image registration is a challenging task in medical image analysis. In recent years, there are two essential issues. First, intensity similarity is not necessarily equivalent to anatomical similarity when the anatomical correspondences between subject and template images are established. Second, the registration algorithm should be robust against monotonic gray-level transformation wh...
متن کاملS to obtain the title of Doctor of Ecole Centrale
This thesis is devoted to dense deformable image registration/fusion using discrete methods. The main contribution of the thesis is a principled registration framework coupling iconic/geometric information through graph-based techniques. Such a formulation is derived from a pair-wise MRF view-point and solves both problems simultaneously while imposing consistency on their respective solutions....
متن کاملNon-rigid 2D-3D Medical Image Registration Using Markov Random Fields
The aim of this paper is to propose a novel mapping algorithm between 2D images and a 3D volume seeking simultaneously a linear plane transformation and an in-plane dense deformation. We adopt a metric free locally over-parametrized graphical model that combines linear and deformable parameters within a coupled formulation on a 5-dimensional space. Image similarity is encoded in singleton terms...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 42 شماره
صفحات -
تاریخ انتشار 2009