A study of supervised classification accuracy in fuzzy topological methods

نویسندگان

  • Wenzhong Shi
  • Kimfung Liu
  • Hua Zhang
چکیده

The multiple classifier system (MCS) is an effective automatic classification method, useful in connection with remote sensing analysis techniques. Combining MSC with induced fuzzy topology enables a decomposition of image classes. This fuzzy topological MCS then provides a new and improved approach to classification. The basic classification methods discussed in this paper include maximum likelihood classification (MLC), minimum distance classification (MIND) and Mahalanobis distance classification (MAH). In this paper, the use of the fuzzy topology techniques in combination with the current classification methods is discussed. The methods included are (1) ordinary single classifier classification methods; (2) fuzzy single classifier classification methods; (3) simple average MCS; (4) fuzzy topological simple average MCS; (5) eigen-value MCS; (6) fuzzy topology and eigen-values MCS. This new experimental approach, involving such combinations for comparing the kappa values and overall accuracies is also discussed. After comparing the kappa values and overall accuracies of these classification methods, the experimental results, demonstrated that (a) methods combiningwith fuzzy topology concepts produced better classification accuracy than the ordinarymethods; (b) the eigen-valueMCSmethod produces better classification accuracy than the non-fuzzy method and (c) the best classifier combination was found to be eigen ( MLC+MIND+MAH fuzzy

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating the Effectiveness of Supervised and Unsupervised Classification Methods in Monitoring Regs (Case Study: Jazmourian Reg)

Due to its mobility and ability to move and its direct impact on residential areas and various developmental activities, the Ergs are of major importance in the desert areas, so monitoring of those is very important. Considering that the use of supervised and unguarded methods is considered as one of the most common methods in determining and monitoring land uses, in this research, the accuracy...

متن کامل

Determination of Best Supervised Classification Algorithm for Land Use Maps using Satellite Images (Case Study: Baft, Kerman Province, Iran)

According to the fundamental goal of remote sensing technology, the image classification of desired sensors can be introduced as the most important part of satellite image interpretation. There exist various algorithms in relation to the supervised land use classification that the most pertinent one should be determined. Therefore, this study has been conducted to determine the best and most su...

متن کامل

A Comparative Study of Pixel Based Supervised Classification and Fuzzy- Supervised Classification over Area around Mysore District

Conventional image classification methods restricts each pixel of data set to exclusively just one cluster. As a consequence, with this approach the classification results are often very crispy, i.e., each pixel of the image belongs to exactly just one class. However, in many real situations, for images, issues such as limited spatial resolution, poor contrast, overlapping intensities, and nois...

متن کامل

Studying Effectiveness of Landsat ETM+ Satellite Images Classification Methods in Identification of desert pavements (Case study: South of Semnan)

Extended abstract 1- Introduction The process of identifying landforms is a subject that has been researched by many researchers. All the definitions of geomorphology emphasize the study and identification of landforms. Understanding landforms and how they are distributed are some sort of essential requirements in applied geomorphology and other environmental sciences (Shayan et al., 2012). O...

متن کامل

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Applied Earth Observation and Geoinformation

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2011